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Abstract

Recently, a. framework for multiscale stochastic modeling was introduced based on
coarse-to-fine scale-recursive dynamics defined on trees. This model class has some
attractive characteristics which lead to extremely efficient, statistically optimal signal
and image processing algorithms. In this paper, we show that this model class is also
quite rich. In particular, we describe how 1-D Markov processes and 2-D Ma.rkov
random fields (MRF's) can be represented within this framework. Markov processes
in one-dimension and Markov randoml fields in two-dimensions are widely used classes
of models for analysis, design and statistical inference. The recursive structure of 1-D
Markov processes makes them simple to analyze, and generally leads to computationally
efficient algorithms for statistical inference. On the other hand, 2-D MIR,F's are well
known to be very difficult to analyze due to their non-causal structure, and thus their
use typically leads to colmputationally intensive algoritlllhms for smoothing and parameter
idlentification. Our multiscale representations are based on scale-recursive models, thus

providing a framework for the development of new and efficient algorithms for Markov
processes and MRF's. In 1-D, the representation generalizes the mid-point deflection
construction of Brownian motion. In 2-D, we use a further generalization to a. "mid-line"
deflection construction. Our exact representations of 2-D MRF's are of potentially high
dimension, and this motivates a class of approximate models ba.sed on one-dim7ensional
wavelet transforms. We demonstrate the use of these models in the context of texture

representation and in particular, we show how they can be used as approximations for
or alternatives to well-known MRF texture models: We illustrate how the quality of
the representations varies a.s a. function of the underlying MRF and the complexity of
the wavelet-based approximate representation.
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1 Introduction

In this paper, we describe how to use a. class of mlultiscale stochastic models to represent i-D
Markov and reciprocal processes and 2-D Markov ra.ndom fields (MR.F's). Ma.rkov models in
one dimension provide a. rich framework for modeling a wide variety of biological, chelmical,
electrical, mechanical and economic phenomena, [10]. Moreover, the Markov structure makes
the models very simple to analyze, so that they often can be easily applied to statistical
inference problems (such as detection, parameter identification and state estimation) as well
as problems in system design (e.g. control and queuing systems).

In two dimensions, MR.F's also have been widely used a.s models for physical systems
['3, 4, 51, 31], amnd m.ore recently for images. For example, Gaussian fields [64] have been
used as image texture models [22, 23, 36, 13, 47, 48], and the more general Gibb's fields
have been used as prior models in image segmentation, edge detection and smoothing prob-
lenis [5, 33, 52, 49]. Causal sub-classes of MRF's, such as Markov Mesh R.a.ndonl Fields
[1, 28] and Non-Sylmmetric Half-Plane Markov chains [35] lead to two-dimensional versions
of Kalman filtering algorithms when the fields are Gaussian [65]. In addition, efficient fast
Fourier transform algorithms are available for stationary Gaussian fields defined on toroidal
lattices [22, 36, 12]. In general, however, Markov random field mnodels lead to computa-
tiona.lly intensive algorithms (e.g. stochastic relaxation [33]) for estimation problems. In
addition, parameter identification is difficult for MR.F models due to the problem of coIn-
puting the partition function [4, 37, 5:3]. Thus, while Markov random fields provide a, rich
structure for multidimensional modeling, they do not generally lead to the simple analysis
a.nd comlputationally efficient algorithms that 1-D Markov processes do.

These computational issues are the most important obstacle to the application of MR.F
models to a, broader range of problems, and are the principal motivations for the in-
vestiga.tion in this paper of the richness of the class of multiscale stochastic processes
[16, 17, 18, 19, 8, 9], and in particular of how such mlultiscale processes ca.n be used to
exactly and approximately represent Markov random fields. Our multiscale stochastic pro-
cesses are described by scale-recursive models, which lead naturally to comlputationally
efficient scale-recursive algorithms for a variety of estimation problems. For instance, fa.st
smoothing algorithms are developed for a class of Gaussian processes by Chou et. al. in
[16, 17, 18, 19]. Also, Bouman and Shapiro demonstrate how a related multiscale discrete
random field [8, 9] leads to an efficient sequential MAP estimator. In this paper, we demon-
strate how a simple generalization of the models in [16, 17, 18, 19] leads to classes of models
which can be used to represent all 1-D Markov processes and 2-D Markov random fields.
The significance of this result is not only that it opens the door to the possibility of new aind
efficient algorithms for MRF models, but also that it suggests that this multiscale modeling
fraamework ma.y be a. decidedly superior basis for image and ra.ndom field modeling andl
analysis than MR.F's both because of the efficient algorithms it admits an(d Iecause of the
rich class of phenomena it can be used to describe.

Our mlultiscale representations of 1-D reciprocal processes and 2-D MRF's rely on a.
generalization of the mid-point deflection technique for constructing a. Brownian motion in
one dinmension [27, 32, 41]. To construct a Brownian motion sample pa.th over an interval
by mid-point deflection, we start by randomly choosing values for the process a.t the two
boundary points, i.e. the initial and final points, of the interval according to the joint
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Figure 1: The first three levels of a "mid-point deflection" construction of a, Brownian motion
sample path are shown on the left. The construction generates a sequence of approximations
based on linear interpolations of samples of the Browniann motion at the dyadic points. On
the right, the basis finctions, integrals of the Ha.ar wavelet, in this construction are shown.

probability distribution implied by the Brownian motion model. "We then use these two
values to compute the expected value of the process a.t the mid-point, which is just the
average, and then add to that a Gaussian random variable with zero mean and variance
equal to the variance of the error in this mid-point prediction. These steps are illustrated in
the left side of Figure 1. The process is then continued by using the original bouindary points
and newly constructed mid-point to predict values of the Brownian motion at the one-fourtlh
and three-fourths points of the interval. Random values, with appropriate error variances,
are then added to the predictions at each of these new points. The critical observation to
be made here is that, since the Brownian motion process is a. Ma.rkov process. its value a.t
the one-fourth point, given the values at the initial point and mlid-point is indcpcndellut of
the process values beyond the mid-point, in particular the values at the three-fourths and
end-points of the interval. Obviously, it is also the case that the value at the three-fourths
point is independent of the values at the initial and one-fourth points, given the values at
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the ilid-point andl final point. Thle consequence of this observation is tbhat the genera.tion of
the one-fourtll and three-fourths point values can be carried out in (1 parallel and decoupled
fa.shion: for each we only need the two previously generated points closest to it (e.g. the
initial and mid-points for the prediction of the one-fourth point) plus a random value to
be added to this prediction that is indepe.ndent of the random value to be added at the
other point. Thus, each of these two steps looks ideTztical in structure to the origina.l step
which generated the mid-point from the two boundary points. In addition, we see tha.t the
Markov property of Brownian motion allows us to iterate this process, generating values
at increasingly dense sets of dyadic points in the interval. At; each level in this procedure
we generate values at the mid-points of all neighboring pairs of points, in parallel and
independently of previously generated points. The structure of all of these steps is identical
to that used to generate the original mid-point.

There are several important observations to be ma~de about the preceding development.
The first is that, by linearly interpolating a.t each level in this procedure, a.s illustrated in
Figure 1, a, sequence of continuous approximations of a Brownian motion is constructed, and
the statistics of these approxima.tions converge to those of a, Brownian motion [27]. Indeed,
this sequence of linear spline approximations ca.n be interpreted exactly a.s a. non-orthogona.l
multiscale approximation using as the scaling function the tria.ngular "hat" function [57]
which is the integral of the IIaa.r wavelet [32]. Second, as we will see, the structure of
this mlid-point deflection construction fits precisely into the mnultiscale modeling framework
developed in [16, 17, 18], and corresponds simply to a particular choice of the pa.rameters
in the multiscale model. Moreover, this conIcel)t generalizes, allowing us to show tha,t
all reciprocal and Markov processes in one dimension 4 can be represented by mnultiscale
stochastic models in a, sinlilar way. Thus, in one dimension we will show tha.t the class of
processes realizable via. multiscale, scale-recursive models is at least a.s rich as the class of
all MaPrkov and reciprocal processes. In fact, as we will illustrate, it is significantly richer
than this.

Furthernlore, and most significantly, these same idea.s can be extended to mnultidinlen-
sional processes. In particular, we show how a generalization of the mid-point deflection
concept to a "mid-line" deflection construction can be used to represent all 2-D Markov
random fields with multiscale models. In particular, the key to our multiscale represen-
tations in one or two dimensions is a partitioning of the domain over which the process
is defined so that the coarse-to-fine construction of the process can proceed independently
in each subdomain. Markovianity plus knowledge of the process on the boundaries of the
subdomnain partition make this possible. The fundamental difference, however, between the
l-D and 2-D cases is due to the fact that boundaries in 1Z2 correspond to curves or in Z2

to sets of connected lattice sites, a.s opposed to pairs of points in one dimelnsion. Becaulse of
this difference, exact multiscale representations of MhRF's defined over a. subset of Z 2 ha.ve
a. dimension which varies from scale to scale, and which depends on the size of the doma.in
over which the MR.F is defined.

As a. consequence, in addition to the exact representations, we will introduce a family of

4Note tha.t this also includes all so-called higher order Markov and reciprocal processes. For example,
a second order Markov process, i.e. one for which the value of the process z(t) at time t depends on both
z(t - 1) a.nd z (t- 2), can be represented as a vector first order Markov process [z(t), z(t - 1 )]T, which can
then be represented in the manner developed in Section 3.
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approximate representatiolns for Gaussian MRF's (GMRF's) based on wavelet transforms.
As we have indicated, maintaining complete knowledge of a process on 2-D boundaries leads
to models of scale-varying dimension, which can become prohibitively large for domains of
sul)stanltial size. On the other hand, at coarser scales, it would seem rea.sonabl)le to keep
only coarse approximations to these boundary values, and this leads naturally to the use
of a, multiscale change of basis for the representation of the values of a 2-D process along
each i-D boundary. That is, through our mid-line deflection based models, we a-re led to
the idea, of using one-dinlensional wavelet transforms in the representation of the values of
a tuo-dimensional GMR.F.

'If wavelet coefficients at all scales are kept along every subdomain boundary for the
GMR.F, we simply have an exact representation for the GMR.F in a transformled basis.
:However, from wavelet analysis of 1-D stochastic processes, such as in [20, 6, 61, 32], we
know that the wavelet transform can achieve high levels of scale-to-scale decorrelation.
This result has led, in one dimension, to approximate models and algorithms [20. 66] which
neglect the residual correlation, and it suggests here the idea. of keeping only a. subset of the
wavelet coefficients representing each boundary. While this approach would yield a coarse
approxima.tion of the GMR.F along each boundary, as we move to finer scales, the length
of each boundary is successively halved, so that "coarse" approximations at fine scales are,
in fact, increasingly fine (and, indeed, at fine enough scales represent complete wavelet
descriptions). The result is a family of models, ranging from those which keep only the
coarsest wavelet coefficients along each 1-D boundary to the exa~ct nlodel which keeps them
all. T'his fatuily of a~pproximate representations allows one to tradeoff the complexity and
accuracy of the representations, while also providing a framework for the development of
extremely efficient estimation and likelihood calculation algorithms.

We demonstrate our framework for wavelet-based approximate representation of Ga.us-
sian lIR.F's in the context of natural texture representation. In particular, classes of
GMIRF's have been widely used to represent natural textures in the context of segmllen-
tation and anomaly detection applications [13, 22, 23, 24, 36, 47, 48], and we illustrate how
these liodels can be approxima-ted in our mnultiscale framework. In addition, we illustralte
how the fidelity of the approximation varies with the characteristics of the (GMRF being
approximated and with the complexity of the approximate representation.

This pa.per is organized as follows. Section 2 describes the class of multiscale stochastic
models that we use. Section 3 develops the details of the representation of Brownian motion
discussed above, and generalizes this idea to allow the representation of all 1-D Markov and
reciprocal processes. Section 4 then describes how these ideas can be further generalized
to provide exa.ct and approximate representations of MR.F's. Section 5 illustrates how the
approximate models can be used to represent GNMRF texture models. In our' opinion. one
of the conclusions that can be drawn firom these results is that this multiscale modeling
framework holds substantial promise as an alternative to MR.F's as it possesses advantages

)both in efficient optimal algorithms and in the expressive power of the framework. A
number of interesting and substantive problems remain to be investigated - such a.s the
use of alternatives to wavelet expansions such a.s wavelet packets [62] or lapped orthogonal
transforms [4,5, 46] - and several of these problems, a.s well a.s the conclusions of this paper,
are presented in Section 6.
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2 Multiscale Stochastic Models

In this section we describe the classes of multiscale stochastic models to be used in this
paper. A class of models for Gaussian processes is described first, followed by a simple
generalization allowing for more general (non-Gaussian) ) processes. For simplicity, in this
section we introduce the basic structure and form of our models in the context of rep-
resenting 1-D signals and processes. The extension of the models to 2-D is conceptually
straightforward, adding only notational and graphical complexity, and thus we defer the
introduction of this extension until Section 4, where it is needed.

2.1 Gaussian Multiscale Models

The mlodels presented in this section were recently introduced in [16, 17, 18, 19] and describe
multiscale Gaussian stochastic processes indexed by nodes on the dyadic tree5 shown in
Figure 2. Different levels of the tree correspond to different scales of the process. In
1)articular, the 2n - 1 values at thle 1mth level of the tree a.re interpreted as information about
the mith scale of the process, where the notion of "information" at this point is abstract. For
instance, values of the process at level m may correspond to averages of pairs of values at
level in + 1. In this case, one could interpret the values of the multiscale process as scaling
coefficients in a. Haar wavelet representation of the process at the finest scale. However,
there are many other possible interpretations of the information represented at each level
in the tree. For example, values of the multiscale process at a certain level could also
correspond to new details of the process not present at coarser resolutions. In this case, the
process values would be interpreted as the uwavelet coefficients in a wavelet representation
of a. 1-D fuinction or sequence. Alternatively, the values of the process at different levels
ma.y correspond to decimated versions of the process at the finest scale. In addition, we
may wish to maintain a set of values at each node of the tree, i.e. a "sta-te" vector, in order
to capture the scale-to-scale memory in a process. For example, one can construct higher
order models in which the state includes both scaling and wavelet coefficients or sets of
values of decimated versions of the process. As we will see, our multiscale representations
of reciprocal processes and MRF's have a natural interpretation in terms of decimated
versions of the processes being modeled, although they can also be interpreted in terms of
scaling coefficients corresponding to particular non-orthogonal multiscale representations.
Moreover, these models will, in fact, require the use of state vectors at each node on the
tree.

We denote nodes on the tree with an abstract index .s, and define a~n upward shift
operator y such that .sj is the parent of node s, as illustrated in Figure 2. Note that the
operator - is not one-to-one, but is, in fact, two-to-one since each parent has two offspring.
Also, we define the scale of node s, i.e. the level of the node, as rn(s). The stochastic tree
process x (s) E ZRnx is then described via the following scale-recursive dyna.mic model driven
by white noise:

x(.s) = A(s)x(.s') + B(s)u1(s) (1)

5As we will see in Section 4 and as is illustrated in Figure 12, the extension to 2-D signals involves, in
essence, replacing the clyadic tree by a quadtree.
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Root node
m=l

s ]YX X m=2

m=4
0

Figure 2: The state vectors in multiscale stochastic models are indexed by the nlodes of a.
,dyadic trce. The tree is a set of connected nodes, in which each node has two offspring.

The parent. of node s is denoted sI alld the scale, or level, of nlode s is denoted by 71,(s).

Multiscale stochastic processes defined on higher-order trees (see Figures 7 and 12) will also
be used.

under the following assumptions6 :

xo - A(O, Po) (2)

w((S) 0 J,(O I) (3)

where w E(s) R ]wlw and A(s) and B(s) are matrices of appropriate size. The state variable
Xro at the root node of the tree provides an initial condition for the recursion. The driving
noise u.,(S) is white, i.e. uc(.s) anld wu(a) are ilncolrrelate(l if s 4 cr. and is ilncorrelated
with the initial condition. Illterpreting eacll level as a. represeiita.tion of one scale of the
process, we see that (1) describes the evolution of the process from coarse to fine scales.
The terml A(s)x(sq) represents inlterpolatioll or prediction down to the next level, and
B( s))w(.s) represents new inforlmation added as the process evolves froml one scale to the
next. The choice of the parameters iA(.s) and B(s) and their dependence (if any) on the
node s, depends upon the particular application a.id process being irodeled. For examllple,

6 The notation x -A/(m, P) means the random vector x is normally distributed with mean m and variance
P. We also sometimes use the notation p,(X) =JV(X; m, P) to denote the same thing.
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if x(s) is scalar and A(s) = 1, the values of x(s) at any particular scale have a, natural
interpretation as providing a piecewise-constant (i.e. Ilaar) aplproximnation to a signal, and
the B(.s)w(s) terms then represent additional detail added in progressing from coarse to fine
scales [16, 17, 18, 19]. If, in addition, the magnitude of this detail decreases geomnetrically
with scale - i.e. if B(s) = 2-q 71l(S), where p is a. scalar constant - then the process so
represented has firactal characteristics [17, 18, 20]. In fact, in general, dependence of A(s)
anlld B(s) on scale mn(s) allows one to model self-similar statistical structures or the presence
of dominant scales [20], while allowing general dependency on the node s provides additional
flexibility including the ability to capture non-stationarities, localized events, etc. In the
context of this paper, as we will see, the parameters of the model (1) are determined in a
constructive fashion in order to represent the reciprocal process or MR.F of interest.

An extremely important property of the scale-recursive model (1) is that not only is
it Markov from scale-to-scale but it also is Markov with respect to the partial ordering
defined by the dyadic tree structure. That is, conditioned on the value a~t a. pa.rent node,
the evolution of the process in the subtree descendant from that node is independent of
everything outside that subtree. This fact imnl)lies that there are extremely efficient and
highly paral.lelizable algorithms for optimal estimation and other signal processing tasks
based on this model.

In particular, as developed in [2, 16, 17, 18, 19], there is an extremely efficient, algorithm
for optimal estimation based on noisy measurements y(s) E Rny of the process of the form:

(-S) = C(s)x.(.s) + v(s) (4)

where ,t(s) V(0, R(.S)) and the ma~trix C(s) can specify, in a very general way, mneasure-
mlents taken at different times or spatial locations and at different scales. The structure of
the algorithmlll for this problem consists of two scale-recursive sweeps (a. fine-to-coarse sweep
followed by a. coarse-to-fine recursion ), each of which follows the structure of the dya~dic tree
so that there is substantial parallelism and efficiency. For example, the extension of this al-
gorithm to 2-D and quadtrees is applied in [42] to develop a new scale-rec'curs ie a.pproach to
dense motion-field estimation in image sequences that is considerably faster than previously
developed algorithms. In addition, a related algorithm, which is also highly parallelizable,
can be used to compute the likelihood of the measurements (log of the conditional proba,-
bility density) given the model parameters [43]. This algorithm can be used, together with
the results presented here, for texture identification and segmentation, for example. An im-
portant point about these algorithms, which is of particular significance for 2-D processing,
is that they are recursive and not iterative, and in fact have contstalnt complexity per data
point or pixel. This is in sharp contrast to the usual iterative algorithms associated with
the processinig of MRF's [33].

2.2 General Multiscale Models

As we indicated in thle preceding section, a basic property of thle model (1:) - (3) is the
Markovianity of the state with respect to the ordering structure defined by the dyadic tree.
More precisely, two sta~tes are conditionally independent, given a. state on the pa-th between
them:

Px(S1),X(s2 )1X(s3),S3 Ersl ,2 (XS1 I Xs 2 IXS 3, 3 E rS1, ,2) =

9



Px(si )Ix(3), \ EV o,,2o ( X9 -1 , -..E - -s "8.- ; .' \ X. ) S E _ 1,82) (2

where Fr,, is defined as the set of nodes il the shortest path between two nodes s an.d a (but
not inlcluding s or a). By starting with this a.ssumption, and then allowing the probability
density function (pdf) for the state at a particular nlode given its parent and the pdlf for the
state a.t tile root node to be arbitrary, we obtain a much wider class of processes than that
given by (1) - (3). Indeed, we define a Markov tree process as a.ly set of random variables
which are indexed by the nodes of a tree and have a joint pdf sa.tisfying (5).

Markov tree processes are naturally defined by specifying the parent-offspring condi-
tional pdf's, along with a pdf for the state at the root node of the tree. A simple example
of a stochastic process in this more general class is the following discrete-state stochastic
process x:(.s) E {, 1,... -,L} with parent-offspring conditional probability mass functions
given by:

IX-) f urm(s) ifX 8 = Xs 
l}X(S)l'(S1VSlS = { (1 09,(,))/L if X, $ X, (6)

p. 0o(Xo) = /(L + 1), for Xo E {0,1,.., L} (7)

where 9n(,) is a number between 0 and 1 which ma.y va.ry with scale rn(s). A class of
processes with this structure and defined on a. quadtree has been proposed by Bouman
for segmentation applications [7, 8, 9]. Wle will see several other examples of such general
Markov tree processes in the next section.

The property (5) implies that the tree processes are Markov in scale, from coarse-to-fi.ne.
In particular, we denote the set of states at a given scale, say mnO, as x"'O _= {rx(s)Im)i(s) =
n0}. Then, using (5), the states at a particular scale, given the states at the previous level,

are independent of all coarser scales:

Px'a22 IX1r:,l,nl <nz(2 (Xm2 1 1,' l < 1i 2< ) = p.12 12i1,,, 2-(Xm=2 I Xz2 - 1 ) (8)

Indeed, (5) implies the conditional pdf of the state at node .s, given the states at all previous
scales, depends only on the state at the parent node sj:

Pa:(s)larm(ao),m(j<m(s)(AslA, n(oa) < nm(s)) = Px(s)lx(s8 )(X, -Xs-s) (9)

In addition, (5) implies tha.t such a, process can also be viewed a.s a. Markov random field
on the tree. In particular, define the neighborhood set Ds of node s a.s its three nearest
neighbors on the tree7 (i.e. the parent and two offspring nodes). The general multiscale
process described above is then a, Markov random field on the tree in the sense that:

Px(s)lx(7),o•s( XS3IA, a $ s) = Px(s)l:r(a),crED(( Xsl-a, Ta E Ds) (10)

The most general class of joint probability distribution functions which lead to conditional
distributions satisfying (10) is given by the Ha.mnersley-Clifford theorem [4]. Our focus
here is on processes which also satisfy the one-sided Markov property (9). because this class
of processes leads naturally to efficient scale-recursive algorithms.

7Obvious modifications of the neighborhood set must be made for the root node at. the top of the tree,
which has no parent, and the nodes at the finest level of the tree, which have no offspring.
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Finally, we stress that while (5) implies that a tree process is an MR.F with respect to
the nearest neighbor set on the tree, the set of states x"m at scale 1i, viewed as a sequence of
length 2"1- 1 is not Markov for an arbitrarily chosen set of parent-offspring pdf's. This point
can be appreciated by, for example, computing the joint pdf for the four values at the third
level of the multiscale process given by (6), and directly checking the conditions required
for Markovianity of the single level sequence s . Hlowever, as we show in the next section,
the pa.rent-offspring conditional pdf's can be chosen such that the single level process x"'7
is Markov in the usual sense, and in fact such that the finest level of the tree process ca-n
be used to represent any 1-D Markov or reciprocal process, with higher levels in the tree
corresponding to representations of the process at coarser resolutions.

3 Representation of 1-D Reciprocal and Markov Processes

In this section we describe the basic properties of reciprocal processes in one dimension, in-
troduce and develop representations of reciprocal processes in terms of multiscale stochastic
models, and present several exalmples.

3.1 1-D Reciprocal Processes

A reciprocal process is nothing more than a first-order MR.F on the real line. More formally,
a stochastic process z(t), t E 7 is said to be reciprocalg (or bilateral Markov, two-sided
Markov or non-causal Markov) if it has the property tha.t the probability distribution of
a. state in any open interval (T1,T 2 ), conditioned on the boundary states z(T 1), z(T2) is
independent of states outside of the interval [29, 38]. That is, for t E (T1, T2 ):

Pz(t)lz(r),rE(Tl,T2 )c(ZtlZrT, T (T1, T2 )c) =

PZ(t)lz(T ),z(T2)(ZtIZT1, ZT) (11)

wh.ere (T1, T2)C denotes the complement of the open interval (T1, T2). Reciprocal processes
defined on the integers Z satisfy the same property with the continuous interval (T1 , T 2 )
replaced by the discrete interval {T1 + 1, T 1 + 2, . . , T2 - 1}:

Pz(t)lz(r),rE{Tl+1,...,T2 -1}c(ZtIZT, rT {T1 + 1, . ,T2- 1} c ) =

pz(t)iz(T 1),z(T 2)(ZtIZT1 , ZT2 ) (12)

Reciprocal processes are closely related to the class of Markov processes. A process
z(t) on 7R or Z is Markov if past and future values of the state are independent given the
present. This means that for t2 < t 3:

Pz(t3 )lz(tl),tl_<t2 (Zt 3 IZtl,tl < t 2 ) = Pz(t,3 )1 (t2)(Ztia Zt2) (13)

As shown in [1], if a process is Markov then it is also reciprocal. On the other hand,
reciprocal processes are not necessarily Markov [29], although one can show that essentially
all stationary Gaussian reciprocal processes are Markov [40].

8 The process is Markov only if 8,,,(,s) = 1/(L + 1). In this case, the values of the process a.t any level in
the tree are independent of one another.

9 The discussion here refers only to first-order reciprocal processes. Extension to higher-order processes
is stra.ightforward [29].



3.2 Exact Multiscale Representations of 1-D Reciprocal Processes

In the introduction we described a construction of a Brownian motion b(t) over an interval,
sa.y [0, 1], via mid-point deflection [27]. As we noted, this corresponds precisely to one of
the Gaussian multiscale stochastic models described in Section 2. To see this, consider the
following process. At the coarsest level, the initial state xo is a three-dimensional vector
whose pdf is given by the joint pdf for the values of a Brownian motion at the initial, middle
and final points of the interval:

b(o)
xo = b(0.5) Vr(O, Po) (14)

b(l)]
0 0 0

P = 0 0.5 5 0. (15)
0 0.5 1

where we have used the facts that b(0) = 0, b(t) is an independent increments process, and
for tl < t 2, b(t2) - b(ti) - nV(0, t 2 - tl).

Choosing a value for x0 as a sample from the distribution (14) corresponds to the first
two steps in the mid-point deflection construction of Brownia.n motion, the first step being a
choice for the two end-point values b(0), b( 1), and the second step being construction of the
mid-point b(0.5). The next step in the mid-point deflection construction is the specification
of values for the Brownian motion at the one-fourth and three-fourths points. In the context
of our lnultiscale nlodeling framework, we define two state vectors at the second level of
the dya.dic tree in Figure 2, each again a 3-tuple. The state on the left represents the
values of the Brownian motion at the initial, one-fourth and middle points of the interval,
[b(O), b(0.25), b(0.5)], and the state on the right represents the corresponding values in the
right half-interval, [b(0.5), b(0.75), b(1)]. The sample at the quarter point is given by linear
interpolation of b(0) and b(0.5), plus a. Gaussian random variable with variance equal to the
variance of the error in this prediction:

b(0.25) = I(b(0) + b(0.5)) + e(0.25) (16)

e(0.25) , A(0,0.125) (17)

Likewise, b( 0.75) is chosen by averaging the end points of the right half-interval, b(0.5) and
b(1), and adding in a random value, independent of the deflection term used to create the
sample at the one-fourth point:

b(0.75) = -(b(0.5)+b(l))+ e(0.75) (18)

e(0.75)- Ak(0,0.125) (19)

The above construction of b(0.25) and b(0.7.5) is precisely the same as the mid-point de-
flection construction of these values. Values of the process at successively finer sets of
dyadic points are generated in the same way. At the nmt t scale, the values of the process
at t = k/2n, k = 0, 1, , 2m are represented with 2nm- 1 state vectors, each containing the
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b(t)

0 0.25 0.5 0.75 1
Scale

m= 1 <' -l

m = I (- em=2

m=3

Figure 3: The state vectors for the first three levels of a. multiscale model representing Brow-

nian motion, b(t), are illustrated. At the first level, the state is the vector [b(O), b(0.5), b(1)],
which is indicated by the three points at mn = 1 surrounded by an ellipse. The points are
placed directly below the points t = 0, 0.5 and t = i on the graph above to indicate that
the state of the multiscale process at the first level consists of the values of the Brownian
motion at those three points. Likewise, at lower levels, the states are indicated by sets of
three points surrounded by ellipses, with the horizontal location of the points in correspon-
deuce with time indices in the the graph a.t the top. At the mth level, there are 2m1- 1 state
vectors, each of which consists of the values of b(t) at three consecutive dyadic points, and
which together represent the values of the Brownian motion a.t 2m + 1 distinct points on
the interval [0, 1]. The multiscale representation for Brownian motion can be generalized to
the class of P-D reciprocal process, which contains the class of l-D Mla.rkov processes.

values of the process at three points, as shown in Figure 3. At any level, each state is a.
linea.r function of its parent, plus an independent noise terml. Thus,. this construction fits
precisely into the mnultiscale modeling framework given by (1) - (3) (see Section 3.3 for the
precise formulae for A(s) and B(s)).

Representa.tion of more genera.l -D reciprocal processes via. multiscale models is a. simple
extension of the above idea. To construct a. multiscadle model for a. particular reciprocal
process z(t), t E [0, 1], start by choosing the state at the coarsest level as a. sample from the
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joint distribution:

Pz(O),z(o.5),z(1)( Zo, Zo.5, Z1) (20)

This generalizes the choice in (14) in which the state at the top level is chosen using the Gaus-
sian distribution corresponding to a Brownian motion. The two state vectors at the second
level are again thle three-dimensional vectors [z(0), z(0.25), z(0.5 )] and [z(0.5 ), z( 0.75), ( l )],
where values for the half-interval mid-points are chosen as samples from the conditional dis-
tributions:

Pz(o.25)lz(O),z(o.5)(7Zo.25{Zo, ZO0.5) (21)

Pz(o.75)lz(o. 5),z(l)(Zo. 75 1ZO.5, Z1 ) (22)

Since the process is reciprocal, z(0.25) and z(0.75) are conditionally independent given the
staite at the first level, and thus the modeling structure fits precisely into the more general
non-linear model class described in Section 2.2.

The construction above assumes that the process is defined over a. continuous inter-
val. In practice, we are typically concerned with processes z(t) on a. discrete interval,
t 6 {0, 1. , T}. If T = 2

N for some integer N, the,, we can use essentially the same
construction as for the continuous case above. Specifically, xo [z(O), z(T/2), (T)] is a
random vector chosen from the appropriate distribution for the process of interest. The
states a.t the second level are [z(O),z(T/4),z(T/2)] and [z(T/2),z(3T/4),z(T)], with the
ha.lf-interval mIid-points again chosen using the appropriate distribution. Since there are
only a finite number of points in the discrete process, only a finite number of levels are
needed to exactly represent it. In particular, with T = 2N, N levels are required.

There are several observations to be made about the continuous and discrete-tilne con-
struction we have just described. The first is that there is no fundamental difficulty in
c:lloosing a. point other than the mid-point a.t ea-ch level in these constructions. For exa.m.-
ple, in the construction of Brownia.n motion, starting from the initial set of points given in
(14), we could next generate any pair of points on either side of 0.5, e.g. b(0.1) and b(0.7).
However, the regular structure implied by the choice of mid-points may be of some value
for processes such a~s Brownian motion which have stationary increments, as they lea.d to
models in which the model parameters, such A(.s) and B(s) in (1) - (3) have very simple
and regular characterizations as a function of node s and scale lr(s) (see, for example,
(46),(47)). This regularity in turn leads to simplifications in the structure of algorithms
for estimation and signal processing, requiring fewer distinct gains to be calculated and,
if parallel implementation is considered, allowing SIMD (single instruction, multil)le data)
rather thaln TMIMD ) (multiple instruction, mniltiple data) implementations.

Secondly, in discrete-time, there will alway-s be a.t least. some degree of irregularity in
the multiscale model if the process is defined over t E {0., 1... T} and T is not a power of
two. In pa.rticular, ix, such a. case the structure of the tree and/or the sta.te needed in the
multisca,le representation of this process will need to be modified. For examlple, consider
a. process defined over t E {0, 1 , 10}. In this ca-se, we can develop a. model of the type
we have described in which the tree is of non-uniform depth and in which we do not have
mid-point deflection at some nodes, as indicated in Figure 4a. (e.g. in the generation of the
va~lue at t = 3 given values at 0 and 5). Alternatively, as shown in Figure 4b, we ma.y be
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able to achieve some level of (and perhaps complete) symmetry by generating more than
one new point at solne nodes (e.g. in Figure 4b we generate values a.t both t = 2 and t = 3
given values at 0 and 5). Obviously, as in standard discrete signal processing applications
in which the FFT is to be used, there are considerable efficiencies to be had if T is a power
of 2.

Furthermore, as we have indicated previously, while our development has focused on
first-order reciprocal processes, the extension to higher-order models is straightforward.
Indeed, a, IKth-order model defined oil t E {1, 2,.. . , K(T + 1)}, where T is a power of 2,
caln be accommlodated by grouping states at adjacent points into sets of size K. The states
at different levels of the tree might be as depicted in Figure 5 for a second-order reciprocal
process defined over t E {0, 1, ... , 18}. Ifigher-order models can equivalently be represented
by simply redefining the state of the process z(t) to be a vector of appropriate dimension.

The representations we have introduced to this point have obvious a.ld substantial levels
of redundancy. F'or example, the value of z(T/2) appears in the state vector at both nodes
at the second level of the multiscale model we have described for discrete-time reciprocal
processes. More generally, at the m.th level of the model for such a, process there are 2 m - 1

state vectors containing a, total of 3 x 2 'n- 1 values, only 2rn + 1 of which a-re distinct. Thllis
redundancy is actually of minimal consequence for estilna.tion algorithms based on these
models. However, it is also easy to elilllinate the redundancy by a simple modification to the
construction we have described. In particular, we may generate two internal points between
each pair of points at each stage in the level-to-level recursion, yielding a. four-dimensional
sta.te vector. For example, if the reciprocal process is defined over t E {1, 2, ... , 16}, theln
we can choose the non-redundant set of state vectors illustrated in Figure 6. In this case,
a, first-order reciprocal process is represented by a process with a four-dimensional state,
instea~d of the process with a three-dimensional state used earlier. In general, a.t the 71,th
level of such a representation, there are 2m-1 state vectors representing 2n1+ l distinct values
of the process. Again, in the situation where T is not a power of two, some irregularity in
the structure will be introduced..

Once we allow ourselves to consider such variants on the original mid-point deflection
construction in which more than one new point is generated between each pair of previously
constructed points, we see illmediately that it is possible to generate multiscale representa-
tions on trees that are not dyadic. For example, a qth-order tree is a set of connected nodes,
such that each node has q offspring as in Figure 7. Consider a reciprocal process defined on
i E {0, 1, ... , 3 N}. This process is most conveniently represented on the regular structure of

a, third-order tree, as shown in Figure 8. This flexibility of the modeling framework allows
the possibility of considering different tradeoffs in terms of level of parallelization and com-
putational power of individual processors when iluplementing estimluation algorithlmls such
as those in [2, 16, 17, 18, 19, 42].

Finally, it is of interest to note that the construction we have described, and its sev-
eral variants, can be interpreted as a. non-iterative Gibb's sampler. The Gibb's sampler
introduced in [33] is an iterative algorithm for the generation of sample paths of Markov
random fields on a discrete lattice. For 1-D discrete-tilme reciprocal processes this proce-
dure reduces to using the nearest neighbor conditional probability functions to construct a.
Markov chain which has an asymptotic distribution equal to the correct joint distribution of
the process. Specifically, at each step of the procedure we modify the current sample path
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m=2 ·· e *

m=3 · ·
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Scale

m=l ·
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m=3 

Figure 4: The state vectors are shown for two possible ilultisca.le representations for a,
reciproca.l process which is defined on a discrete interval of the form {0, 1, 10}. In (4a),
a dlyadic tree with uniform state dimension, but non-uniform depth is used, whereas in (4b)
a. dyadic tree of uniform depth but non-uniform state size is used.
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z(t)

0 18
Scale

m=l e e 1e

m=32

m=3

Figure 5: The state vectors are shown for a multiscale representation of a, second-order
reciprocal process defined on a discrete interval. In this case, the state vectors are coniposed
of three groups of two points, reflecting the fact that the value at the current point, say
z(t0 ) is independent of the values at all other times, given the pairs of nearest neighbors
z(to - 1), z(to - 2) and z(to + 1), z(to + 2).

zk(t), t E {0, 1, ... , T} by replacing the value at some point in time, say to with a. random
value chosen according to the conditional distribution for the process at tha.t point given
the current values of the sample path at to - 1 and to + 1. By cycling repeatedly through all
of the time points, the sample path is guaranteed to converge to one with the correct joint
statistics. The procedure is conceptually simple but computationally intensive, since the
Markov chain requires many transitions for the probability function to converge. In con-
trast, in our construction, we successively generate samples at new points (e.g. mid-points)
conditioned on values at previously generated points, which are not nearest neighbors but
rather boundary points that partition the time interval of interest. For this reason, and
since we begin at the root node with a decimated set of values with the correct distribution,
we are guaranteed that at each stage the decimated process that is constructed ha.s exa.ctly
the correct distribution. Thus, with this structure we visit each tile point only once a.nd
construct a. sample path non-iteratively.

In fairness, an important point to note hlere is that if a. reciproca.l process is specified
directly in terms of a Gibb's distribution - i.e. in terms of nearest neighbor energy functions
(see, for exanmple, [33]) - then the calculation of the nearest neighbor pdf's required in the
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Scale

m=l 
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Figure 6: The state vectors are shown for a non-redundant nlultisca-le representation of
a l-D reciprocal process. These non-redundant representations, a.ppropriately generalized
for the 2-D case, axe useful in the context of wavelet-based approximate represenltationls of
Ca.mussian MRF's.

q offspring

Figure 7: The qth-order tree is illustrated. This is a set of nodes, ea.ch of which has q
offspring.
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z(t)
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Figure 8: The state vectors are shown for a multiscale representation on a third-order tree.

GCibb's sampler is simple. The question then is whether it is also simple to determine the
conditional pdf's - e.g. the pdf for z(T/2) given z(0) and z(T) - needed to implement
the non-iterative, multiscale procedures we have described. In general, this may not ble a
straightforward task, since, if we begin with a Gibb's distribution the computation of such
pdf's requires explicit calculation of quantities related to the so-called partition function
[33], which can be quite complex. On the other hand, such calculations need only be
done once to construct the pdf's needed for the multiscale model. In addition, a.s we have
seen for Brownian motion and as we now illustrate further, in many cases, including all
vector Gauss-Markov processes, closed form expressions can be derived for the niultiscale
representations.

3.3 Examples

In this section we discuss several examples of reciprocal processes and their nultiscale rep-
resenta~tions. The first examples describe multiresolution models for general vector Gauss-
Markov processes specified in state-space form. and, in particular describe this construction
in detail for two cases corresponding to the integral of white noise (i.e. Brownia.n motion)
and the second integral of white noise. These examples allow us to illustrate the interpre-
tation of these multiresolution models as providing approximations using non-orthogonal
expansions. In particular, our model for Brownian motion corresponds to the use of the so-
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ca.lledl "hat" function [57] in this expansion, leading to linea.r interpola.tion between dya.dic
points, while the model for the integral of Brownian motion leads to a multiresolution
approximation using cubic interpolation.

The second part of this section presents several simp.le discrete-state examples, the first
of which investigates general N-state Markov chains a.nd allows us to ma.ke conta.ct with
the imodels used in [7, 8, 9] for segmentation applica.tions. The second example is a. general
two-state process, which is used to demonstrate tha.t the class of mnultiscale m.odels is in
fa.ct far richer than the class of Ma.rkov processes. In particular, through this example
we gain insight into the very particular conditions that the parent-to-child transition pdf's
must satisfy in order for the finest level process to be Ma.rkov. This analysis suggests tha.t
Maxrkov chains are, in fact, only a. sma.ll subset of the processes realizable with mlultiscale
models a~nd, in particular, directly motivates several other miultisca.le mid-point deflection
processes which are not Markov.

3.3.1 Gauss-Markov Processes

Consider a vector Gauss-Markov process defined on the interva.l [0, 1] and given by:

5(t) = Ftz(t) + Gtit(t) (23)

where:

z(0) JAr(O, Ho) (24)

E{/,(t)tf(T) T } = I 6( t- r) (25)

E{Ly(t)z(0)T} = 0 (26)

Define the sta~te transition matrix by:

'(t,T) = Ftql(t,r) (27)

,(t,t) = I (28)

and state cova~riance ma,trix Ilt = E{z(t)z(t)T}. As is well known [27], the sta.te covariance
matrix satisfies the following differential and integral equations:

Hlt = FtHt + ltF T + GtG T (29)

Ht = (t, 0)H0l (t, 0 )T + j ,(t, r)BBT ,(t, r)Tdr (30)

Also, defin.e the conditional expectation of the state at time t2 given the states z(tl) and
z(t 3), a.nd the corresponding covaria.nce of the error as:

Zt2tl,t, =- E{z(t 2 )lz(tl), (t3 )} (31)

Pt21tI,t3 = E{(z(t 2 ) - Zt2lt,t 3)(z(t/2 ) - t2 .2)

Since:

Pz(t2 ) I(tl),z(t3 )( Zt 2 IZt 1, Zt3 ) = A'(Zt2 ; Zt21tl,t3 Pt2tlt3 ) (33)
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the conditional expectation (31) and error covaria.nce (32) are the quantities we require to
construct a multisca.le representation of the process (23) - (26). In fact, it is easy to show
that for tl < t2 < t3:

ztt,,t 3 = flt,1 (t 2 ,tl)( tl) [ i(tt) ( (3
1(t3, t2)1lt 2 J (t3 ,t li(ta , it3 j (t3 ) ] (34)

p~3]t~rtS = n ul (t2, tOT T 1 Itlt, t, (t3, tl)T 1 l, 4)(t2, tl)T

fittt-,tt - t2t2 L (t3, tI))I 3 , It 3 J (t 3 , t 2))IIt2

(35)

Equations (34) and (35) directly provide us with the parameters of the matrices A(s),
B(s) and Po in the multiscale model (1) - (3) corresponding to our mid-point deflection
construction. In particular, let us identify the abstract index .s with a pair of numbers (in, 0p)
which denote the scale and horizontal shift of tile node s, respectively. The horizontal shift
S°, running from 0 to 2vn-1 - 1, indexes the nodes a.t scale in. For instance, the root node is
associated with the pair (1,0), and the left and right nodes a.t the first level are associated
with (2,0) a~nd (2,1), respectively. With this nota.tion, the sta.te at node s on the tree
contains the values of the process z(t) at the particular three points:

z(2p/2"1 )
xz() - x((m7, P)) = z(( 2 ,o+ 1)/ 2 m ) (36)

z((2p + 2)/2m)

From the description of the general construction, the forml of the matrix A(s) in (1) is clear:

I 0 0
AK I1t2 0 if p is even
0 I 0

A(s) -A((n,)) = (37)
0 I 0
0 Ki1 2 if ;v is odd

In particular, if Sp is even, then the first and third components of the state x(s) in (36)
correspond to the first and second components of x(sc). Thus, the identity matrices in
(37) for po even simply map the first and second components of x(sf) to the first a~nd third
components of x(s). In addition, the mid-point prediction of z((2p + 1)/ 2

mTf) is julst a. linea.r
function of tile first two components of the parent x.(sf). wllich is expresso-l via. tle llatrices
K 1 and K 2 in the second row of (37). The matrix A(s) for p odd is similar. a.nd in fact is
just a, "shifted" version of A(s) for cp even (reflecting the fact tha.t the interpola.tion down
to the state on the right depends on the last two components of x(s' )).

The gain matrices in (37) can be compluted directly from (34). rUsing standard formulas
for the inversion of a block 2 x 2 matrix, we compute:

K1i = (t2 , tl) + I(t 2, tl)ntl(t 3, tl)T(nt3 - ~(t 3,t l )nt(t 3,tl)T)-l(t 3 , t1)

-IIt 2 3,(t3, t 2 3)T(It - 4(t3, t 1)IItl '(t3, tl)T)-yl(t3, tl) (38)
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KI2 = -$(t2, tl)11t N.(t3, tl)T(It 3 - (t 3, tl)t1, N(t3 , tl)T)-1

+IIt2q(t3 , t2) T (lt 3 -_ (t 3, tl )Htl lq(t 3, tl )T) -1 (39)

where tl = 2(o/2m, t 2 = (2 p + 1)/2m and t3 = (2V + 2)/2m.
The matrix B(s) in (1) has the following block structure:

B(s) _ B((mt, cp)) = Ki3 (40)
0

where KI3 is any matrix such that K3Ti3 = Pt21tl,t3 and, again, tl = 2o/2n, t2 = (2±+ 1)/2"t
and t3 = (2o+2)/2nl. The matrix B(s) in (40) reflects the fact that no noise is added to the
first and third components of the state x(s), (which a-re simply copied from the preceding
level), while noise corresponding to the error (35) is added to the second. In particular,
froml (3) we see that in this case the covariance of the additive noise term B(s)w(.s) in (1)
is given by:

E{B(s)w(s)wT(.s)BT(S)} = B(.s)BT(s)

0 0 0
w=- L P(2 j+l )/ 277I"2yv/ 2,l?( 2 ,.,+2)/2 ?'f 0 (41)

where .s - (ms, c).
Finally, the initial covariance matrix Po in (2) is given by:

z(0) z(0) T
Po E z(0.5) L z (0.5) (42)

, z(1) z(1) J
Iio IIo 4 (1/ 2 , 0)T Hno0 (l, o)T

- (1/2, 0)IT /2 1/2( 1'1,1/2)T (43)
(1, 0)1Io ((1, 1/2)11l/2 II1

For instance, if z(t) is the standard Brownian motion, then Ft = 0, I(t, r) = 1, a.lld
Ht = t. Thus for this example (34) and (35) become:

t 3 - -t2 t 2 -- tl
zt2 ttl,t t3 - - (tl)+ Z(t 2 ) (44)

t3 - tl t3 - t-

(t2 - tl)(t3 - t2)

t 3 - tl

andl we obtain:

1/2 1/2 0 if p is even
0 1 0

A(.s)-A((m,o)) = ( (46)
0 1 0
0 1/2 1/2 if v is odd

22 0 1

22



B(s) B((?m, o)) 1/2( m q
+l)/

2 (47)
0

O 0 0
Po 0 0.5 0.5 (48)

0 0.5 1

The formula (34) for the conditional expectation :t2,t 1 ,t3, which specifies A(.s) as just de-
scribed, also provides us with the required formula for interpolating between dyadic sample
points at any level in our multiscale representation and hence provides us with a direct inter-
preta~tion of this representation as providing a sequence of multiresolution approximations.
For example, Brownian motion provides us with the linear interpolation formula, given ill
(44) and illustrated in Figure 1. This corresponds to a. multiresolution linear spline a,pproxi-
mation or, as also illustrated in Figure 1, as a non-orthogonal inultiresolution decomposition
using the so-called "llat" function [57].

As a second example, consider the movement of a particle whose velocity is given by a,
Brownian motion. This motion can be described using the following Gauss-Markov process:

0(t) [0 ] + I (t) (49)

In (49), the first component of z(t) is the particle position and the second colponellet is its
velocity. The state transition matrix D(t, r) and the state covariance ma~trix lit are given
by:

(t, r) = K0 t1Tr (50)

= [ t3/3 t2/2 ] (51)

One can show by direct computation tha.t the terms fItl1(t 2, tl)T and P(t 3 , t 2)11t2 in the
leftmost block matrix on the right side of (34) contain only cubic powers of t 2. Note also
that the block matrix in the middle of the right side does not depend on t2 . Thus, the
interpolation of z(t 2 ) between tl and t3 is a cubic polynomial in t 2:

_tc + ltlt3 c 2t 2 + c3t 2 + c4t2]
t2 It1,t3 -= [ h c2 + 2c 3t 2 + 3 4tt 2 (52)

where from (49), the second component of 2 t2]tl,, is just the first derivative of the first.
One can use (34) directly to calculate the values of the coefficients iIn (52). Alternatively,
it is clear from the definition of Zt2 tl,t3 in (31) that Ztlltl,tl = - (tl) and It ltl,t3 =(t 3 )'

These two constraints provide four linear equations in the four unknown coefficients in (52),
and thus uniquely determine the interpolating function (52). Note that the interpola~ting
polynomial for the first component of the state (the position of the particle) has a. continuous
derivative at the knot locations t = k/2 m , k = 0, 1,. ., 2 m . The interpolation of the first

component of the state is shown in Figures 9a and 9b for the first two levels of a sample
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Figure 9: The first two scales in a multiscale representation of a. process which is equal to
the seconzd integral of white noise are shown. The representation consists of salmples of the
process at dyadic points along with a piecewise-cubic interpolation. Compare these curves
with the lower two graphs of Figure 1, which depict the piecewise linear interpola.tion of
the first integral of white noise.
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path of the multiscale realization. Figure 9a is thle cubic interpolation of z(0), z('0.5) and
z( 1), while Figure 9b is the cubic interpolation of z(0), z(0.25), z(0.5), z(0.75) and z(1).

Finally, while we have focused on the construction of multiscale models for continuous-
time Gauss-Markov processes, an exactly analogous set of calculations can be performed
for the discrete-time process:

z(t + 1) = Ftz(t) + GtL(t) (53)

Also, as discussed in Section 3.2, in this case we call either construct models with three-
point state vectors (e.g. [z(O), z(T/2), z(T)] or four-point state vectors [z(1), z(T/2), z(T/2+
1 ), (T)]The former of these is exactly analogous to what we have done Ilere in continuous-
time and has, as we have indicated, a. high degree of redundancy, while the latter does not.
We defer explicitl; discussion and illustration of such non-redundant representations until
Section 4 where we describe them in the context of modeling 2-1) MRF's.

3.3.2 Discrete-State Processes

Next consider a. general finite-state Markov process z(t) E { I, 2, ... L} defined over a, discrete
interval t e {0, 1, ... , 1'}. The probability structure of the process is completely determined
by the initial conditions:

Pr[z(O) = k] (54)

for k E {1, 2, ... L} and by the one-step transition probabilities:

P~,j - Pr[z(t) = ilz(t - 1) = j (55)

We define the one-step transition matrix:

Pt,1 P1.2 ... P1,L
P - P2,1 P2,2 P2,L (56)

PL,1 PL,2 '. PL,L

Note that the multistep transition probabilities are given by powers of the matrix 0 P:

Pr[z(t + r) = ilz(t) = j] = [p]i,j (57)

Using (57) and Bayes' rule it is straightforward to calculate that for tl < t2 < t 3:

Pr[z(t 2) = jJ(tl) = i, (t 3) = ] t3-t2]J [pt -tlj (58)

These conditional probabilities, in addition to the probability function required for the state
at the root node of the tree, namely

Pr[z(O) = i, z(T/2)= j, -(T) = k] = [pT/2]kj[PT/2]j,iPr[(O) = i] (59)

10[A]i,j stands for the (i, j) element of the mnatrix A.
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Figure 10: A sample path of a discrete-state Markov process is shown. A multiscale repre-
sentation of this 8 state process is developed in Section 3.3.2.

allow us to construct the multiscale representation of the process. Note that (58) is the
counterpa.rt of the conditional probability equations for Gauss-Markov processes given in
(33) - (35), and that the pdf for the state at the root node (59) is the counterpart of the
initial covariance matrix (43).

One special case of this process is the following:

Pi,i -= ' (60)

Pi', = L-1 (61)

Pr[z(0) = i] 1/L, i = 1,2, ,L (62)

A sa.lmple path of such a process is shown in Figure 10 for L = 8 and it = 0.97. Neighboring
states of this process tend to })e the same, and when t.he process does change st:at,. no
particular change is preferred. Thus, this model would seenl to be a. natural one t.o use in
segmentation applications and can in fact be viewed as an alternative to the 1-D multiscale
mlodel (6) introduced in [7, 8, 9]. As noted in Section 2.2, the model in (6) does not in
general produce a Markov chain or reciprocal process at the finest level. On the other hand
(60) - (62) is a Markov model and for this process:

[P] (1 +(L -1)k)/L if i = j
26 (1 - k)/L if i (63)
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where:

V = (Lit- 1)/(L- 1) (64)

The conditiona.l probability function (63) can be verified by noting that, given (60), (61),
the one-step transition matrix (56) is circulant, a.nd thus dia-gonalized by the L x L Discrete
Fourier Transform matrix. Alternatively, by writing the one-step transition matrix for this
example as the sum of a multiple of the identity, plus a matrix with constant entries, one can
directly calculate the eigenvalues and eigenvectors, which again can be used to diagonalize
(5(6).

Using (58), for this example we can write down the transition probabilities for the mid-
point deflection model. In particular, assuming that T is a. power of two, we can associate
the state at node .s with the following values of the process:

z(2 T/2m11)
x(.) - ZX((m1, ( )) = z( (2pT + T)/2 m ) (65)

z((2wpT + 2T)/27"7)

where, a.s in (36), the pair of numbers (7n, Sp) denote the scale and horizontal shift of the
node .s, respectively. Thus, to generate the state at node s, given the state a.t the parent
node .q5, we require the following conditional pdf:

1 (1/42 ifi=j=k

Pr~(j2fIzT+T 2spT) 2 pT+2T 161/6 if i $ j = k
P r[2( '2 2)jlz(( 2=" 1i, , )=k]if i = j if I k (66()

21 11/42 ifi=k j
l1l/62 if i,j,k distinct

where:

1 = (1 + (L -l1)T/2n-I )/l (67)

(2 = (1 + (L- 1)T/2m-2)/L (68)

Il = (1- T / 2..- 1 )L (69)
2 = (1 - T/2"1- 2 )/L (70)

To gain additional insight concerning the structure of our multiscale models, consider
the particular example of a stationary two-state binary process with one-step transition
mla.trix and initial state probabilities equal to:

P - I - II, 1I (71)
L 1 -11 

Pr[z(0) = i] = { I/(71+ l ) if i = 1 (72)
p/('ij+ t if i = 2 (2)

For this process one can show that:

pk _ j~1 [ + ((l-( 11 I- )k I"+ 11(1- I,-1")k 1
-tk j (73)

71+t tI + l ( 1 - - ) /+(1- -2) k
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and thus using (73) with (58), (59) one can build multiscale representations for the class
of stationary binary Markov processes. While we have focused in this example and in the
previous one on processes with stationary state transition probabilities, it is straightforward
to apply this construction to the representation of non-stationary discrete-state Markov
processes as well, simply by choosing the conditional probability functions required in the
multiscale representation correctly.

Moreover, the mid-point deflection structure can also be used to generate non-Markov
processes on the tree. For instance, consider the following binary mid-point "selection"
process defined over t E {0, 1, ... 2N} [59]:

Pr[z(O) = i,z( 2N - l) = j,z(2N) = k] = 1/8 for all i,j,k (74){ t if i = j = k
Pr[z(t2) = ilz(tl) = j, Z(t 3 ) = k] = 1 - t, if i. j and j = k (75)

0.5 ifj j k

where i,j, k E {1,2} and where tl,t 2, t3 are a.ny 3-tuple of dyadic points corresponding
to one of the state vectors in the multiscale representation. At the coarsest "scale" of
this plrocess, the three components of the state vector x0 are independent and identically
distributed random variables, each equally likely to be 1 or 2. It is easy to show that
the process resulting from this construction is not Markov in general, and thus we can
conclude that the set of binary stochastic processes which can be constructed vithin the
mid-point deflection framework is strictly larger than the class of binary Markov processes
over intervals.

In fact, a bit of thought shows that the class of processes realizable by multiscale models
is quite a. bit larger than the class of Markov chains. Indeed, any binary stochastic process
defined over t E {0, 1, .. , 2 N} when represented via. mid-point deflection ha.s a. probability
structure which is determined by 4 (2 N - 1) parameters, corresponding to the required
conditional probability functions. In particular, the conditional proba.bilities Pr[(t 2) =
ilz(tl) = j, z(t 3 ) = k] for specific choices of tl < t2 < t3 are uniquely determined by the
four parameters:

Pr[z(t 2 ) = 1z(t1) = 1, z(t 3) = 1] = A1 (76)

Pr[z(t 2) = 1z(t) = 1,z(t3) = 2] = A2 (77)
Pr[z(t2 ) = 1lz(tl) = 2,z(t3 ) = 1] = A3 (78)

Pr[z(t 2) = 1lz(tl) = 2,z(t 3) = 2] = A4 (79)

Since tlhe process is replresented withl an N level millltisca-le process. there are 2 N - 2 of thfese
conditiona.l densities which must be specified, corresponding to each of thle nodes except the
root node. However, the probability function for the sta.te a.t the root node also requmires four
para.leters, and thus the total nlumber of parameters to be specified is 4( 2N - 1). In contrast.
a, non-stationary binary Markov process defined over the time interval t E {0, 1, ... 2N }

requires a.t most 1 + 2 x 2N parameters (one corresponding to the initial probablility, and
2 for each transition from t to t + 1, for t = 0, 1,. 2 N - 1). Since each of the pa.ra.meters
in each of these models is a probability, i.e. a number in the interval [0,1], we see tha.t the
set of processes arising from N-level multiscale models is in one-to-one correspondence with
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the 4 (2 N - 1)-dimelsional unit cube, while the set of lon-stationary Markov chains over the
same length interval (2N + 1) corresponds to the 2 (2 N + 1)-dimensional unit cube. Thus,
for N > 1, Markov processes constitute only a "thin" subset of the entire class of binary
tree processes.

4 Represention of 2-D Markov Random Fields

In this section we first review a few of the properties of Markov random fields and then
describe how Markov random fields can be represented exactly with our multiscale modeling
structure. Next, we introduce a family of approximate representations for Gaussialn MR.F's
employing i-D wavelet transforms.

4.1 2-D Markov Random Fields

Markov random fields (MR.F's) are a multidimensional generalization of 1-D reciprocal
plrocesses. A continuous space stochastic process z(t), t E R7L is said to be a Markov
randomn field if the probability distribution of the process in the interior of any closed set
Q is independent of the process outside, conditioned on the values of z(t) on the boundary
F of Q. That is, for t E Ft \ rF:

Pz(t)lz(r),Te(Q\r)c(ZtiZr, T E (Q \ F)c) =

Pz(t)lz(r),rEr(ZtlZrT E r) (80)

where the notation t \ r denotes the set of elements in Q which are not in F (in this case,
the interior of FQ). The definition for Markov random fields on discrete lattices requires
the specification of the notion of the "boundary" of a set in Z" [64, 29]. Typically, this
is accomplished through the specification of a neighborhood system. The idea is that the
probability distribution of z(t), conditioned on a set {z(r), r E De} in the neighborhood,
Dt, of t, is independent of the process outside the neighborhood:

Pz(t)lz(T),rez,\{t}( ZtlZT-, E Z n \ {t}) =

Pz(t)lz(r),TEDt(ZtIZrTr E Dt) (81)

In this paper, we focus on 2-D MRF's, i.e. where t E 32, and in this context there is
a hierarchical sequence of neighborhoods frequently used in image processing applications
[13]. The first order neighborhood of a lattice point consists of its four nearest neighbors
(in the Manhattan metric), and the second-order neighborhood consists of its eight nearest
neighbors. The sequence of neighborhoods up to order seven is illustrated in Figure 11.

A given neighborhood system implicitly determines the boundary set of any particular
region. In particular, given the neighborhood system Dt, t E Z2 . the boundary F of a. subset
Q of Z2 is given by the set of points which are neighbors of elements in Q. but not elements
of t:

r = {irI e Dt. t E Q} \ Q (82)

The conditional distribution and neighborhood structure cannot be chosen arbitrarily
if one is to obtain a consistent joint distribution for the elements of the random field.

29



7 6 7
5 4 3 4 5

7 4 2 1 2 4 7
6 3 1 t 1 3 6

7 4 2 1 2 4 7
5 4 3 4 5

7 6 7
Figure 11: The first through seventh-order neighborhoods of lattice site t are shown. The
first-order neighborhood consists of just the two vertical and two horizontal nearest neigh-
bors.

First, the neighborhood system must have the properties that t 0 Dt and (2) if t E Dr
then r E Dt. Second, the conditional distribution functions must satisfy the consistency
conditions given by the Iamlimersley-Clifford theorem [4]. For detailed accounts of these
issues and MR.F's in general, we refer the reader to a few of the widely referenced papers
in the field [30, 54, 56, 4, 64, 36, 33, 29].

4.2 Exact Multiscale Representations of 2-D Markov Random Fields

The representations of i-D reciprocal and Ma.rkov processes in Section 3 relied on the
conditional independence of regions inside and outside a boundary set, and we use the same
idea here to represent Markov random fields on a square lattice. The multiscale model is
identical to that used in the i-D case, except that it is defined on a quadtree instead of
a. dyaclic tree. That is, we consider multiscale models exactly as in (1) - (3) but where .s
denotes a node on the quadtree depicted in Figure 12 and I is a four-to-one operator, i.e.
each point is the parent of four descendant points at the next level.

Quadtree structures arise naturally in multiresolution image processing contexts. For
instance, successive filtering and decimation operations lead to images defined on such a.
hierarchy of grids in the Laplacian pyramid coding algorithm of Burt and Adelson [11] and
in the closely related wavelet transform decomposition of images [44]. Also, the miltigrid
approaches to low level vision problems discussed by Terzopoulos [60] involve relaxation on
a. similar sequence of grids. In addition, Wilson and his colleagues [21] have introduced
and used a particular simple example of the model in (1) - (3) with the state defined on a.
qua.dtree for image processing.

In fact, it is interesting to note that both in [21] and in the segmentation studies in
[7, 8, 9] a similar deficiency in the qua.dtree models was discussed. In particular, processing
based on these models led to blocky results which could differ significantly for different
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Figure 12: The quadtree structure shown is used for the multiscale representations of
Maarkov random fields (MRF's). Each node of the quadtree has four offspring, denoted
.8-OVNW, S0 'NE, 80'SE, s'sw. Again, the parent of node s is denoted sj, and in this case 5' is
a fotur-to-one shift operator.

positionings of the tree with respect to the finest scale Z 2 lattice, and this fact led to the
need for more complex processing structures. In particular, in [21] it was necessary to
perform processing several times with different tree positions and to average the results,
while in [7, 8, 9] the tree was replaced by a more connected lattice (so that any two nodes
have both common ancestors and common descendants). The latter modification, however,
destroys the partially-ordered Markovian structure which the dyadic and quadtree processes
possess and which leads to highly parallelizable and scale-recursite, rather than iterative,
algorithms. In this section, we show that one can completely avoid the apparent problems
in using quadtree nimodels by demlonstrating that one can model lany MRF exactly lsing suich
a mlodel.

Consider a 2-D MR.F z(t) defined on a (2 N + 1) x (2
N + 1) lattice. The construction of

reciprocal processes in one-dimension started with the values of the process at the initial.
mliddle allnd end points of an interval. In two dimensions, the analogous top level description
consists of the values of the MR.F around the outer boundary of the lattice and along the
vertical and horizontal "mllid-lines" which divide the lattice into four quadrants of equal size.
For instance, on a, 17x 17 lattice, the state vector x0 at the root node of the quadtree contains
the values of the MRF at the shaded boundary and mid-line points shown in Figure 13.
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O Boundary points o Mid-line points

Figure 13: The state vector at the root node in the MRF multiscale representation colsists
of the MRF values at the boundary and "mid-line" points, shown in the shaded region here
for a 17 x 17 lattice. To construct a sample path of the MRF using the "mnid-line" deflection
construction, we start by choosing a sample from the joint distribution of the values in the
root node state.

The boundary points are denoted with 0 and o symbols, respectively. In general, the state
at tihe root node is a ('6 x 2N - 3)-dimiensional vector (given some ordering of the boundary
ald 1id-line lattice points). To construct a sample pathl of the MiRF we begin by choosing
a, sample from the joint pdf of the MRF values defined on the boundary and mid-line set.
This is the 2-D counterpart to choosing a sample from the pdf in (20) when constructing a
1-D reciprocal. process.

In the 1-D case, transitions fi' om the first to second level consisted of obtaining a, salmple
from the conditional distribution of the state at the mid-points of the left aind right half-
intervals. In two dimensions, we predict the set of values at the mid-lines in each of the
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four quacdranults. The components of the four stale vectors at the second level are illustrated
in Figure 14 for the 17 x 17 MRF. The points corresponding to the state in the north-west
corner are shaded, and correspond to a scaled and shifted version of the points at the top
level. The boundary points of the north-west state are denoted with open and blackened
clialuond symbols and the new mid-line points are denoted with open circles. Note that the
four states at the second level share the black diamond mid-line points of the state at the
first level. This is analogous to the 1-D construction in which the mllid-point at the first level
corresponds to an end point in both states at the second level (cf. Figure 3). In general, the
state vectors at the four nodes at the second level each specify the MR.F alt 6 x 2

N - l - 3
lattice points. Each of these states at the second level consists of points carried (town from
the root node (namely the diamond boundaries of each of the quadrants in Figure 14) as
well as new mid-line points within each quadrant (the open circles in Figure 14). These
imid-line values are chosen as samples from their joint conditional distribution, given the
state at the root node, The key point here is that given the values of the field around the
boundary of' each quadrant, the values of the field along the mid-lines of that quadrant
are independent of the values outside this quadrant. Said another way, the four states at
the second level of the tree are conditionally independent given the values of the MRF on
their respective boundaries, i.e. given precisely that information captured in the state at
the first level. Thus, the values along the new mid-lines at the second level can be chosen
independently and in parallel, in analogy to the way the two mid-points in (21), (22.) are
chosen.

Now, we can iterate the construction by defining the states at successive levels to be
the values of the MR.F at boundary and mid-line points of successively smaller subregions.
Indeed, by subdividing each quadrant in the same way as we did in going from the first level
to the second, at the mnth level the 4 m-l state vectors each contain the values of the M.RF at
6 x 2xN - m1+ l - 3 boundary and mid-line points. Note that the dimension of the state varies
from level to level, reflecting the obvious fact that the number of points in the boundary of
a. 2-D region depends on the size of the region. The mnultiscale representation ha.s N levels,
and each of the 4 N-1 states a.t level N represent 9 values in a 3 x 3 square. Because of the
Markov property, at each level the states are conditionally independent, given their parent
state at the next higher level. Thus, the MR.F can be thought of precisely as a mlultiscale
stochastic process, and, in the Gaussian case, this leads to models exactly as in (1) - (3).

As in the 1-D case, there are several comments to make. First, we have described a
construction in which the lattice is square. If the MR.F is defined over a non-square lattice,
then the same basic approach will work. In particular, all we require is some sequence of
subregions whose boundaries eventually become dense in the set of lattice points. Second,
just as our 1-D n.lultiscale model has a. na.tral interlpretation in terms of deciamation -
e.g. if the points on the finest scale correspond to integers, i.e. to .Z then a.t the next; most
fine scale they correspond to even integers, i.e. 23 - so does our 2-D model, although it
differs from the usual notion of decimation in 2-D. Specifically, if the points on the finest
scale correspond to Z2 = Z x 3, then the usual notion of decimation would be 23 x 2Z.
In contrast, the notion of decimation associated with our lllultiscale models yields the set
(23 x Z)U(Z x 22) at the next finest scale.

Third, note that the representation we have defined is redundant. In the 1-D case this
redundancy was removed by predicting two mid-points at each level instead of one (cf.
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Figure 14: The components of the four state vectors at the second level of the tree are scaled
and shifted versions of the components of the state at the root node. For instance, the state
corresponding to the north-west corner at the second level of a representation for an MRF
defined on a, 17 x 17 lattice consists of the values of the process at the shaded points. The
values of the MRF at the boundary points in these second level sta.tes are mapped down
fromn the root node state, and the va.lues a.t the new nl(l-lines in each of the four qla.ra.nlts
are chosen independently. In particular, the new mid-line values in any given quadrant are
independent of values of the MR.F outside that quadra.nt. given the boundary. Thus, in
the construction of a sample path, we can choose values along each of the four sets of new
mid-lines independently and in parallel. This process caln then be iterated, by defining the
sta.tes of the multiscale process at lower levels in the quadtree with respect to successively
smaller subdomlains, and constructing the process (along boundary a.nd mid-line points)
independently within each subdomain.
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Figure 6). Likewise, ill two dimensions we can elilinate the redundancy by p)redlictilg two
mid-lines at each level instead of one. For instance, tile state vector at the top level of the
quadtree for an MRF defined on a 16 x 16 lattice would consist of the values of the MRF
at the shaded points shown in Figure 15, and the four state vectors at the next level would
consist of the values of the process at the points shaded in Figure 16. In the 2-D case this
latter representation is important in the context of defining approximate models, as will be
seen in the next section, and illustrated ill Section 5.

Fourth, higher-order models can be easily accommodated. For exalmple, if the Markov
randlom field has up to a fifth-order neighborhood (cf. Figure 11), the field can be repre-
sented by taking as state the values of the process along boundaries and 1mid-lines of "width"
two. Inl general, neighborhoods of any order can be handled by increasing the boundary
and mid-line widths appropriately.

Fifth, in the case of Gaussian MRF's, the prediction from one level to the next in our
representation, as captured by the term A(s)x(sy) in (1), is simply the result of a 2-D version
of the interpolation formula displayed in (31) for general 1-D Gauss-Markov processes and
in particular in (44) for Brownian motion. As in I-D, this interpolation formula can also
ble thought of as providing a multiresolution a.pproximation to a. process using interpolation
functions specifically tailored to the process under consideration. To see this more clearly,
note that the linear spline interpolation formula for .Brownian motion given values at two
points z(0) = Zo and z(T) = ZT is simply the solution to the second-order differential
equation:

d2
dt2 tl O ,T = 0 (8:3)

Similarly the interpolation of the first component of the second-order process (49) is given
by the solution of:

dt 4z tl O,T = 0 (c4)

given z(0), 5(0), z(T) and 2(T). The 2-D example analogous to the linear spline model for
Brownian motion is Laplace's equation:

V2 = 0 (85)

given values of z on the boundary of a square region, while the counterpart to (84), cor-
responding to a second-order model, would be the solution of a. homogeneous biharmonic
equation:

1V4 = 0 (86)

given boundary values and normal derivatives along the boundary. AIore generally, the
particular interpolation formula. for a. i-D or 2-D process is given by the solution of a specific
homogeneous differential (or partial differential) equation deternlined by thile cova.riance
structure of the process (see, for example [63, 39], for related discussions).

Finally, we note that for domains of substantial size. the representations may be of
prohibitively large dimension. This issue is addressed for Gaussian MIR.F's in the next
section, where we introduce a family of low-dimensional approximate representations based
on one-dinmensizonal wavelet transforms of the MR.F along 1-D boundaries.
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Figure 15: The state at the root node in a non-redzundant exact multiscale representation
of an MRF defined on a 16 x 16 lattice consists of the values of the process at the sha(led
points. The redundancy in the exact representation is eliminated by generating the values
of the process along two mid-lines instead of one. The figure also illustrates the sets Fs,i,
a.nd the sequences i3s,i,j(k) defined in the context of approximate representations in Section
4.3. The /s,i,j(,k) are 1-D sequences corresponding to values of the MRF along boundaries
of square subdoinains (which, at the first level, are the white areas in the figure). These
sequences overlap at the corner points of boundaries. In the figure, this is represented by
putting two symbols at the same lattice point, e.g. V and t> in the upper left corner.
The approximate representations take as the state subsets of the coefficients in 1-D wavelet
expansions of the /3,i,j(k) sequences.
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Figure 16: The four states at the second level of the tree in a, non-redundant exact multiscale
representation are scaled and shifted versions of the state at the root node, and are shown
here for an MRF defined on a 16 x 16 lattice. The state in the north-west corner contains
the values of the process at the shaded points in the north-west 8 x 8 quadrant. With the
node ,; corresponding to this north-west corner state, the sets F8.i and sequences 13s,NIV.j

are illustrated. Note again that the sequences 13S, overlap.
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4.3 Approximate Multiscale Representations of 2-D Gaussian Markov
Random Fields

In this section we propose a family of approximate representations for Gaussian MRF's that
p)rovide low-dimlensional alternatives to the exact multiscale representations. The basic idea
behind the approximate representations is to take as the state not boundaries of regions, but
rather some reduced-order representation of them. Conceptually, we would like to retain
only those components of the boundary that are required to maintain nearly complete
conditional independence of regions. In general, exact conditional independence will be lost
unless the entire boundary is kept, but as we discuss and illustrate here and in the next
section, in many cases only a small amlount of information needs to be retained in order
to obtain adequate representations of the important statistical and qualitative features of
a. Gaussian MRF.

The basis for our approximation methodology is a. change of coordinates in representing
the values of MRF's along 1-D boundaries. A family of models can then be generated by

laking different choices for the set of coordinates to be retained and those to be discarded
at each level of the multiscale representation. These models range from being exact (if
all coordinates are retained) to increasingly approximate and simple as fewer and fewer
coefficients are retained. While one can imagine using a wide variety of diff'erent coordinate
transformations, including a. 1-D Fourier transform or a Karhunen-Loeve expansion, we
focus here on a choice that is particularly well matched to the self-similar, mlultiresolution
nature of our exact representation. Specifically, as illustrated in Figures :15 and 16, a.s we
proceedl from one level to the next finer level in our multiscale representation of a Gaussian
MR.F, the boundaries at the coarser levels are essentially halved in length (and new, shorter
boundaries a-re added as well). This self-similar structure suggests representing the values
of the MIR.F along such boundaries in terms of wavelet bases. In this case, if a.t eac.h level
we keep only the wavelet coefficients up to a, particular level of resolution, then at each level
in our representation we are actually adding only one new level of detail.

The approximation that is made in keeping only coarse wavelet approximations along
boundaries actually has two parts. The first is that we assume that the new detail to be
adlded along each boundary from level to level is independent of the previously generated
coarse approximations. The second is that we neglect the residual correlation between MRF
values in neighboring subregions when we are given only a coarse approximation, ra.ther
than complete knowledge of, the values along their common bounda.ry. The former of these
approximations, namely the scale-to-scale decorrelation capability of wavelet transforms,
has already been studied and well documented in several papers on 1-D stochastic processes
[19, 61]. The latter of these, which deals explicitly with the full statistical structure of 2-
D MR.F's, has not, to our knowledge, been investigated previously (in fact, the use of
1-D wavelets for 2-D random fields is, we believe, a. completely new idea.). As the results
presented here illustrate, this appears to be an extremely effective method for mlany MR.F's.

The approximate models are based on the non-redunldant exact representations for
MRF's described in the previous section. The states at the first a-nd second levels of this
representation for an MR.F defined on a 16 x 16 lattice are shown in Figures 15 and 16.
The root node state in Figure 15 contains the values of the MRF a.t 112 points. More
generally, in a multiscale representation of an MR.F defined on a. 2N x 2 N lattice, a, state at
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the fljth level in tl-lis exact representation represents the values of the MRF at 16(2 21 - m1 - 1)
points. We denote this set of points as r,, and we view it as the union of four mutually
exclusive subsets. In particular, consider again the 112 points associated with the root node
state in Figure 15. We can view these as four sets of 28 points, each of which corresponds
to the boundary of one 8 x 8 quadrant. Int general, we can divide the set Fr into four
sets of 4( 2N-m7l(s) - 1) points in a, similar fashion, and we denote these mutually exclusive
subsets as r,,i, i E {NW, NE, SE, SW}, where the subscripts refer to the spatial location
of the subset. For instance, with s = 0 corresponding to the root node, the four subsets
F0,i, i E {NW, NE, SE, SW} are illustrated in Figure 15 with the symbols:

Fr,Nw V , <,, and combinations of these. (87)

0O,NE (88.)

FO,SE 0 (89)

Fo,s'w o (90)
(91)

Next, we interpret the set of values {z(t), t E r,,i} for each of these quadrant boundaries,
as four i-D sequences of length 2 N-m(s), corresponding to each of the sides of the quadrant
boundlary. Thus, there are a total of sixteen 1-D boundary sequences associated with the
set r,, and we denote these as: 3s,i,j, i E {N1W, NE,,SE, SI'},j E {hu, hi, vl, vr}, where
the latter four subscripts refer to the "horizontal, upper", "horizontal, lower", "vertical,
left" andl "vertical, right", respectively. For instance, for the 16 x 16 lattice, the sequences
jo,ij are shown in Figure 15 and defined below:ll

/30O,NWA,hl(k) = z(0, k), corresponding to the points denoted with V,

the combination of 7 and 1d,

and the combination of V and 1> in Fig. 15. (92)

/3 0,NIW,,vr(k) = z(k, 7), corresponding to the points denoted with <,
the combination of < and V,

and the combination of < and A in Fig. 15. (93)

/30,NW,lhl(k) = z(7, k), corresponding to the points denoted with A,

the combination of / and <1,

and the combination of A and t> in Fig. 15. (9.1)

/30,NWqvl(k) = z(k, 0), corresponding to the points denoted with >,

the combination of D and V.

and the combination of t and A in Fig. 15. (95)

1"We will use z(i,j) to denote the value of the MRF at lattice site (i,j). If the lattice has T1 rows and T2
columns, then (i, j) e {0, 1, , -1 x {O, 1, ... T2 - 1}.
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/3 0,NE,hu(k) = z(O,k + 8) (96)

0o,NE,v,.(k) = z(k, 15) (97)

130,NE,hl(k) = z(7, k + 8) (98)

/30,NE,vl(k) = z(k, 8) (99)

/30,SE,h.(k) = z(8, k + 8) (100)

/3 0,SE,vr(k) = z(k + 8,15) (101)

/30,SE,hl(k) = z(15, k + 8) (102)

130,SE,v(k) = z(k + 8,8) (10:3)

13o,sw,hu(k) = z(8, k) (104)

!3o,sw,,vr(k) = z(k +8,7) (105)

/30o,sw,hl(k) = z(15, k) (106)

3o,sw,vI(k) = z(k + 8,0) (107)

for k = 0, 1, 7. Note there is overlap in the sequences 3s,ij. For instance, /3(o,Nvl.hn, and

I3 O.N",,vI both contain the value of the process at (0,0), and this fact is reflected in Figure
15 by the presence of both V and > at this lattice point.

Let us now consider the simplest of our approximate models. Specifically, we take as

the state of the approximate representation just the averages of the sequences 13s,,j. The

state at any node then has sixteen components:

XNV( (S)

x(s) NE(S) (108)

XSW(8) J
where:

s) Os,i,h 
(109

Wio/3 9,i,hl (:LO)

[4l/ol3sivl

for i E {NIW, NE, SE, SW} and where Wo/3,o,ij denotes the average of the sequence 3s,i,j(k).

Given the definition of the state (108),(109) (which will be generalized shortly to allow

general wavelet transform approximations to the sequence 13s,i,j), the conditional parent-

offspring pdf's need to be obtained from the MRF being approximated. Instead of using

these directly, we make an ad(litional approximation. Let us define the lofwuslift: oper-

a.tors cri,i E {NW, NE,,SE, SlW}, which are the counterparts of the upshiIt operator 5

defined previously (see Figure 12). In particular, we denote the four offspring of node s as

.soi, i E {NTW, NE, SE, SW}, where the subscript refers to the relative spatial location of

the offspring nodes. in the exact, non-redunldant reprcsentations, the following relationship

holds:

pz(t),tErSiz(T),TEr(Ztt E I rsjilZr, r E rs) =

PZ(t),tErs,,i Iz(T),TEr,,i(Ztt IE rsaiIZrlr E rs,i) (110)
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for i E {NTW, NE, SE, SW}. What (110) says is that the conditional pdf for the state at
node sai depends only on a subset of the values making up the state at the parent node S.
For example, in the case of the NMV offspring of node s, the state in the exact representation
at node sOaNW (that is, z(t), t C rs,,,W) depends only on the NWY component of the state
at node .s (that is, on the values z(t),t E rs,NW). Thus, in thle exact representation the
state at node SeNWIF is independent of the values of the MRF at the points in rF,NE, Fr,SE
and Fl,sw, given the values at Fr,NW. In contrast, it is not true in general in the sim-
ple approximate representations just described that the state x(sa'NcW) is independent of
XNE(S), xSE(S) and xswV(s), given XNw(s). That is, simply knowing the average value of
a, process along each side of a square region does not completely decorrela-te the values of
the field inside and outside the region. Nevertheless, in our approximate modeling frame-
work we will make exactly this assumption. More generally and precisely, our approximate
modeling methodology yields a sequence of models corresponding to differing resolution
approximations to the boundary processes 13,i,j(k), where (108) - (109) corresponds to the
coarsest of these. Using the same symbols xi(s) and x(s) to denote the state comlponents
and state of any of these models, we construct our model by making the approximation
corresponding to assuming that the conditional independence property holds, i.e. that:

PX(8ci)lJ r(X)( 89-ei) = PX(sc3i);1i(s)(Xsa Il-Xi(s)) (111)

Since the field being approximated is assumed to be jointly Gaussian, the conditional
density function (111) is parameterized by conditional means and cova-riances as in (33) -
(35):

Px(scvi)lxi(s)( XsQtilXi(s)) = - (X)sai; sci, Psi) (112)

where:

'sai = Er{(saai)Jxi(s)}

- E{x($Ii)X:i(s)T}(E{xi(s)xi(s)T}-li(s) ( 113)

P.si = E{(x(saoi) -sai)(x(saoi) - .'sci)T }

= E{x(saci)x(sai)T }

-E{x(sa i)xi(s)T}(E{xi(s)xi(s)T} )-l(E{x(sci)xi(s)T } )T

(114)

One can then derive the matrices A(s), B(s) and Po in the multiscale representation of
the ra.ndom field:

A(saO'NW) = [K 1,0,0.0] (115)
A(saNE) = [0,?K 2 ,0,0] (116)

A(SaSE) = [0,0,Ii3,0] ('117)
A(saeswa ) = [O,O,O,K4] (118)

where:

II'i = E{x(sai)(xi(s))T}(E{xi(s)(xi(s))T} ) - l (119)
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Also:

B(sari)B(saTi)T = Pspi (120)
Po = E{xo0 T} (121)

The assumption (111) is directly reflected in (115.) - (118). In particular, the state x(sc'i)
is a function only of the ith component of the parent (cf. (108)). Thus, the assumption in
(111) leads to relatively simple level-to-level interpolations. Indeed, if the MI2.iF is station-
ary, from symmetry we see that not only do the parameters A(s), B(s) depend only on the
scale of node s, but also, K1 = K 2 = K3 = K 4 . Thus, in this case, the representationls a.re
quite simply described, and more importantly, this simple structure, in addition to the sub-
stantially reduced dimensionality of the approximate representations, leads to considera~ble
efficiencies for smoothing [17, 18, 19] and likelihood calcula.tion algorithms [43].

As we have indicated, the generalization of the coarsest approximate mlodel, with state
given by (108), (109) corresponds to using wavelet transforms to obtain difflrent resolution
representations of thle sequences 1/3s,,j(k). We utilize the wavelet transform for discrete
sequences as described in [6]. The wavelet transform of /3s,i,j(k), k E {1, 2,... , 2 N - m

w(s)} is a
set consisting of a single "scaling" coefficient and 2

N -n(5) - 1 "detail" coefficientsl2. These
a.re computed recursively according to13:

n=2M

fk = hn;,+2-2 (122)
n=l

7n=2A.I

-' = nE 5 f;n+2k-2 (123)
n=l

where the scaling coefficients and detail coefficients are fji and d3 respectively, h,,, g, are
N-mz(s)+limpulse responses of quadrature mirror filters [26, 55] of length 2MI, and where fk

/, k,i,(k). We sa.y that a pth-order representa.tion of the sequence /3s,i,i(k) is a set consisting
of the scaling coefficient and the wavelet coefficients up to order p in the wavelet expansion,
a.nd tha.t a, zeroth-order representation is a, set consisting of just the scaling coefficient. 'We
denote the operator whlich maps the sequence /3S,,;j(kc) to its pth-order representation as
/14,. Note that if p = N - re(s) the representation is complete, since it contains the scaling
coefficient and all of the wavelet coefficients. For p > N - in(s) we take WlVp = I/N_,,(,)
(i.e. if there are fewer than p scales of wavelet coefficients, we keep all of them).

The generalization of the approximate representation based on averages of the 1-D
sequences 3s,i,j(k) discussed previously now just involves a, new definition for the state

1 2To be concrete, we assume that the wavelet transform filter/downsamlple operations are iterated until
the sequence of sca.ling coefficients, i.e. the downsampled output of the lowpass component of the wavelet.
filter bank, is of length one. More generally, one could stop at anyl point in the decomlposition.

3"Our notation is slightly different from that in [6]. In particular. in [6], increasing superscript j cor-
responds to lower levels in the decomposition (i.e., feuwer wavelet and scaling coefficients). while here it
corresponds to higher levels.
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variables x(s). In particular, simply replace (109) with:

['Vp/s,i,hu
x.i(.s) = 13lVPs,.v , (124)

]Vp/s,i,vl

where ]Mp/s,ij denotes the pth-order representation of the sequence /s,i,j(k) (a vector of
length 2p if p < N - rn(s) and of length 2 N-mI(s) if p > N - (s)) 'ihus, the state at
any given node consists of sixteen components, each a pth-order representation of one of
the i-D boundary sequences 3,si,j(k) associated with the state x(s). Using this generalized
definition for the state, and making the assumption in (11.), the parameters A(s), B(s) and
Po are again given by (115) - (121).

Several comments are in. order. First, note that a simple generalization of the above rep-
resenltation would be to allow different levels of approximation for different components of
the boundary sequences (e.g. one might use a pith-order approximation for "vertical" bound-
ary sequences ,3,i,j,j E {vr,, v} amnd a. p2-order approximation for "horizontal" boundary
sequences 13,i,j,j 6 {hu, hl}). Examples of such a generalization will be given in the next
section in the context of a.lpproxinlate representations for MR.F texture models.

Second, note that even if all of the wavelet coefficients are retained at all levels (i.e.
if the boundary representations are complete), the representation we have just described
will be exact only if the GMRF is Markov with respect to either the first or second-order
neighborhood in Figure 11. As we have discussed, higher-order neighborhoods lead to
thicker boundaries, and this leads naturally to the idea of taking wavelet expansions of
boundaries of width two or more, and utilizing these as the state. When the boundaries are
expanded to have a width of q lattice sites, the state at node s will be broken up into the pth.
order representations of 16q sequences of length 2N-tm(s). With this expanded family, the
approximate representations can be made exact for any GMRF by keeping complete wavelet
expanlsions of all boundary sequences ,,ij(k) at all scales. An example of an approximate
representation which keeps wavelet coefficient along boundaries of width two is discussed in
the next section.

Third, note that the covariance matrices required in (119) and (120) are not invertible if
the representation of the 1-D boundary sequences is complete, due to the fact, as mlentioned
previously, that these sequences overlap. For instance, in Figure 15, both /30,NW, hu and
/3 0,NW,,vl contain the value of the state at pixel location (0, 0). In this case we have redundant
inforllation and hence the conditional expectation and error covariance formulas must be
modified to deal with this. This modification is a. straightforward matter as discussed in
[50, 58].

Fourth, note that not only has the dimensionality of the representations been reduced
in going from the exact to the approximate representations, but it has, in fact, been made
conlstant at the first N - p levels of the quadtree, where p is the order of the approximation
and the MR.F is defined on a 2N x 2N lattice. In particular. the dimension of the state at
node .s is equal to 16 * 2", for rn(s) < N - p. When mn = N - p, the boundary sequence
representations are complete and the dimension of the state drops by a. fa.ctor of 2 at ea.ch
level thereafter.
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Fifth, because our approximate models keep only limited resolution versions of MIRF
values along 1-D boundaries, the quadtrees for these apl)roximadte models may require more
levels than the exact mlodel. For example, consider an MRF over a 4 x 4 region. The
exact representation of this field in our framework has only a single level, since the exterior
bounda.ries and mid-lines form the entire 4 x 4 region (consider Figure 15 adapted to a. 4 x 4
grid). On the other hand, a first-order Haar approximation would retain only the sixteen
average values of pairs of horizontal or vertical points at the first level, only twelve of which
are independent thanks to the overlap in the 3si,j sequences. Consequently, in this case, we
need a, second level, corresponding to "averages" of single points, to completely represent
the field.

Finally, the order of the approximations required to achieve a desired level of fidelity
in the approximate model depends, of course, on the statistical structure of the specific
CGMIt under study. In the next section we present examples which illustrate this for
several GMR.F's and a number of different approximate representations.

5 Examples of Approximate 2-D Gaussian MRF Represen-
tations

In this section we illustrate samp.le paths generated by our approximate representations for
two exam.l)les of separable Gaussian MRF's and then for two examples of non-separable
Gaussian MRIF's. Separable MRF's were one of the first widely used image models becaause
of their simpllle covariance structure [34], while non-separable GMRF's have been widely
usedl in the context of texture representa.tion [13, 14, 22, 23, 24, 47, 48].

5.1 Separable Gaussian MRF Examples

Consider a separable Gaussian MR.F defined on a 2N x 2N lattice with a covariance function
given by:

E{z(i,j)z(k,l)} = a2pli-klpl~- l l (125)

where px and py are one-step correlation parameters in the vertical and horizonta.l directions.
These random fields are Mlarkovian with respect to the second-order neighborhood given in
Figure 11.

Let us construct a zeroth-order Haar approximate representation of this MRF. In this
case, the state at the root node of the tree consists of sixteen values, representing the
a~verages across each of the 1-D components of the boundary. Since this state variable is
just a linear function of the values of the random field, its covariance structure can be
calculated clirectly from knowledge of the averages taken and the cova.riance function in
(125). Indeed, the covariance matrix for the four averages corresponding to the north-west
corner of the state at the root node is given by:

1W4o/ 30,NW,vl, lH4O/30,NWi,l, .:, W v ry

E JW1'1o30,NWI,hu Hi030,NW,hr W - Y 1
E 14oo0.Nw, hl H /VO 30,NW,hl Oxa'-'y I' y 126

o TL'O/3 0,NW,It WJoL/30,NW,V J QyW, Oy x ', WOX
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wh lere:

Wy = (2N-l(1 + py)l(l - py)- 2py(l - _ p2N- )/(1 -py)2WY -~ ~ ~ ~ ~ ~ ~ ~~~~~ Y(1271)

= (( -x (129)
ex 2-2-i

e, = P,2 (130)
2N--2_1Ly = py2 N-2 1 (131)

Figures 17a and 171) illustrate 256 x 256 samtple paths of exact representations of the sep-
ara.Ible randomn fields for Px = py = 0.7 and pl = p 0 = 0.9, respectively. Sample pa.tlhs

of zeroth-ordler Hia.a.r applroximations of these MRF.F's are shown in Figures 17c andl 17(l,
reslec.tively14. Note that for px = py = 0.7, the zeroth-order approximation is visually
similar to the exact representation, with only minor boundary effects apparent, caused by

the a.lpproximation in the first-order Haar model, i.e. the neglecting of the residual correla-
tion in adjoining regions when we are given only the coarse Htaar approximnation of the field
along conmmon. boundaries. As the coupling between pixels is increased, the effects of this
coarse approximation becoime more apparellt, a.s seen in the first-order approximation of the
sepa.rable MRiF with p, = Py = 0.9. This indicates that such. fields will in general require
higher-order approximations. W!e defer the illustration of such higher-order approximations
of fields to the following subsection, in which we describe several exanmples of the use of our
Ilmodeling miethodology to represent natural textures.

5.2 Non-Separarable Gaussian MRF Examples

C.onsider the class of GMR.F's defined by the following 2-D autoregressive model [12, 36]:

z(i,j) = kz(i-kj-)c(i,j) (132)
(k,I)ED

lwhere rk,t = -k,-D, D is a. neighborhood around the origin (0,0), the Gaussian driving noise
Ce(i,j) is a locally correlated sequence of random variables, and (i. j) E {0, 1,... , 2 N} x
{0, 1,...,2N}. In the examples below, the set D corresponds to the neighlborhood sets

in Figure 11. For instance, the set corresponding to a. first-order neighborhood is D =
{(0, 1),(0, -1),(1, 0), (-1, O)}. In addition, we interpret the 2 N x 2 N lattice as a. toroid, i.e.
the independent varia.bles (i,j) in (132) are interpreted modulo 2

N . For instance, the first-

order neighborhood of lattice site (0, 0) is given by the set {(1, 0), (0, 1), (0, 2 N - I), (2 N -

1,0)}. Finally, the correlation structure of the driving noise is given by:

f2 if k == I0O

E{c(ij)c(i-k,j-) -/ 2
=--r2k./ if (k,) E D (133)

0 if (k.t)¢ D

a.nd( has the pIrol)erty that:

(r2 for i = k.j=l 
ijl= 0 else (134)

14We eimphasize that the Figures 17c - I 7d depict sample paths of the a-pproxima.te represent.a.tions, a.lnd
not approxinmate representations of the sample paths in Figure 17a - 17b.
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a 1b

c d

Figure 17: Sample paths of a separable MRF with correlation structure E{z(i, j)z(k, I)} =

r2pi- k plj-3 l with p3 = py = 0.7 and p, = pu = 0.9 are shown il (a) and (b) respectively.

Sample pa.ths of zeroth-order approximate representations of these fields, ba.sed on the IIaar
wa~velet, are shown in (c) and (d). The stronger correlation between neighboring pixels in
(b) leads to boundary effects in the sample path of the approximate representation shown
in (d), which can be eliminated by using higher-order approximations.
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From ('134), and the fact that the random field is Gaussian, one can prove that the atutore-
gressive model above does imply that z(i, j) is a. Markov Random Field [64]. lWe refer to the
model (132) as a Qth-order MRF if the set D corresponds to the Qth-order neighborhood
of Figure 11.

Infinite la~ttice versions of the processes in (132) were introduced in [64] and their toroidal
lattice counterparts have been thoroughly studied in the context of texture representation
[13, 14, 22, 23, 24, 4-7, 48]. The correlation structure of these MRF's cannot be explicitly
written down as in the previous example. However, the specific statistics and correlations (as
in (115) - (118)) required to construct our multiscale approximate models can be computed
efficiently using 2-D FFT's because of the fact that correlation matrices for these random
fields, assuming lexicogralphic ordering, are block circulant with circulant blocks and hence
these random fields are whitened by the 2-D Fourier transform [36]. In particular, denote
by z the set of values z(t) stacked into a vector (with lexicographic ordering), and denote
the correlation matrix of the MRF by Rzz. Then:

FRzzF* = A (135)

wh.ere F is the 2-D Fourier transform matrix and A is a. diagonal nmatrix of the eigenvalues
of R.zz. The wavelet coefficients required in the approximate representation correspond to
linear fiLnctions of the values z(t). That is:

TTp/ 3s,i,j = I4'pSz (136)

= Lz (137)

where the matrix L is the product of the wavelet transform operator lV, and a. "selection"
nma.trix S which generates the vector /,3 i,j fromll z. Thus, to compute the correlation matrices
required in the approximate representation, we need only compute functions of the form:

LRzzLT = (L1F*)A(FLT) (138)

Indleed, as described in [43], the structure of the approximate representations and the sta,-
tionarity of the GMRIF allow us to compute the required correlations with only 2P 2-D
Fourier transform operations per level of the representation, where p is the order of the
approximation. Furthermore, these calculations need only be performed once, since they
are used simply to determine the parameters in the multiscale approximate model.

Figure 18a illustrates the "wool" texture from [14]. Three sample paths of approximate
representations of this field based on the Haar wavelet are shown in Figures 18b to 18d.
The wool texture is corresponds to a fourth-order version of the model (132), with the
coefficients given in Table 1.

Figures 18b and 18c correspond to zeroth and first-order a.pproximations, respectively.
Note in Figure 18c tha.t some of the boundary effects apparent in Figure 181) have disap-
pea.red, due to the increase in the approximation order. Since the wool texture is a.ctua.lly
Ma.rkov with respect to the fourth-order neighborhood of Figure 11, an exact representa.-
tion of this field would require that boundaries of width equal to two be kept. To this end,
the approximation shown in Figure 18d takes as sta.te variables first-order approxima.tions
to these double width boundaries. Essentially all of the boundary effects present in the
Figures 18b to 18c have been eliminated, and this representation a.ppears to have retained
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Figure 18: A sample path of a Ga.ussian MR.F representing the "wool" texture of [14] is
shown in (a). Figures 18b - 18d illustrate sample paths of approximate representations of
this MRIF based on the Haar wa~velet. Zeroth and first-order approximations are usedl in
(b) and (c),respectively. In (d), a first-order approxima.tion based on bounda.ries of wiclth
two is used. Note that as the order of the approximate model is increased, the boundary
effects disappear, and that for relatively low-order models an approximla.te representation
which retains most of the qualita.tive and sta.tistical features of the original MR.F ca~n be
obtained.
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(k, I) hk,l (k, 1) hk,l
(1,0) 0.4341 (0,21) 0.0592
(0,1) 0.2182 (-1,2) -0.0302
(-1,1) -0.0980 (1,2) -0.0407
(1,1 ) -0.0006 (-2,1) 0.0406
(2,0) -0.0836 (2,1) -0.0001

Table 1: Coefficients in the model (132) for the "wool" texture.

(k,l) hk,l (k,l) hk,l

(1,0) 0.5508 (0,2) 0.0139
(0,1) 0.2498 (-1,2) -0.0085
(-1,1) -0.1164 (1,2) -0.0058
(1,1) -0.1405 (-2,1) -0.0008
(2,0) -0.0517 (2,1) 0.0091

Table 2: Coefficients in the model (132) for the "wood" texture.

the essential statistical and qualitative features of the exact representation used to generate
Figure 18a..

Figure 19a illustrates the "wood" texture from [14], and three approximations of this
MR.F based on the HIaar wavelet are shown in Figures 19b - 19d. The wood texture corre-
sponds to a fourth-order version of the model (132), with the coefficients given in Table 2.

This texture clearly has a very asymmetric correlation structure, and thus we represent
the vertical aind horizontal boundary with different levels of approximation. In Figure 19b,
the horizontal and vertical boundaries are represented with second and zeroth-order approx-
imlations respectively. In Figures 19c and 19d, the horizontal boundaries are represented
with fourth and sixth-order approximations, respectively, whereas the vertical boundary is
still represented with a zeroth-order approximation. As the complexity of the representation
increases, the sample paths of the approximate random fields have fewer boundary effects.
The approximate representations used to generate Figures 19c and 19d appear to accurately
represent the qualitative and statistical features of the MR.F. An interesting point here is
tha~t the level of representation only needs to be increased in one direction to obtain an ex-
cellent representation of the field. Also, the neighborhood of this MRF is fourth-order (see
Figure 11) and thus double width bounda.ries would be needed in an exact representation.
The fields shown in Figures 19b to 19d, however, use only the thinner boundaries in forming
states. Several experiments were done in which we used the double width bounda.ries in
for-ming states for models analogous to those in Figures 191) to 19d. It was found, how-
ever, that there were no visual differences between the single and double width approximate
representations.

Three approximations of the "wood" texture based on the Daubechies 8 wavelet de-
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Figure 19: A sample path of a Gaussian MRF representing the "wood" texture of [14] is
shown in (a). Figures 19b - 19d illustrate sample paths of approximate representations of the
MRF based on the HIaar wavelet. The structure of the MhRF suggests using approxiumations
which use relatively low order representations of vertical boundaries. The approximate
representations used to generate Figures 19b - 19d used zeroth-order representations of the
vertical boundaries, and second, fourth and sixth-order representations for the horizontal
bouncldaries, respectively.
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Figure 20: Figures 20a - 20c illustrate sample paths of approximate representa.tions based
on the Daubechies 8 wavelet, with the same orders of approximation as in Figures 19b -
19d.

scribed il [26] are illustrated in Figures 20a to 20c. The order of the a.pproximations are
identical to the orders for Halar approximations in the previous example. ¥We note that
there is no apparent difference between the approximations based on the IIaa.r wavelet and
the Daubechies 8 wavelet. That is, at least for this example. and for the others we have
examined, the critical issue in model fidelity appears to be model order rather than the par-
ticular choice of the wavelet used. Furthermore, as these examples indicate, we can achieve
quite high quality results with low-order models, which in turn lead to extremely efficient
a.lgorithlms as in [16, 17, 18, 19]. In addition, as we briefly discuss in the next section,
for GMR.F's which have particular directions in which correlation structures are oscillatory
rather than monotonically decaying (such as the one describing the "wood" texture), there
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may be different choices of bases other than wavelets that lead to high fidelity models of
even lower dimension.

6 Discussion and Conclusions

In this paper, we have shown how to represent reciprocal and Ma.rkov processes in one
dimension and Markov random fields in two dimensions with a class of multiscale stochastic
models. This modeling structure provides a framework for the development of efficient,
scale-recursive algorithms for a variety of statistical signal processing problems. The rep-
resentations illn 1-D rely on a generalization of the mid-point deflection construction of
Brownian motion. In 2-D, we introduced a "mid-line" construction which leads to a class
of models with scale-varying dimension. Since for reasonable size fields this state dimen-
sion mlay be prohibitively large, we also introduced a, class of multiscale approxilmate MRF
representations based on 1-D wavelet transforms of the MRF along i-D boundaries of mul-
tiresolution partitionings of the 2-D domain of interest. This family of models allows one to
tradeoff complexity and accuracy of the representations, and provides a framework for the
development of extremely efficient estimation and likelihood calculation algorithms. Ex-
amples demonstrated that for relatively low-order models, an approximate representation
which retains most of the qualitative and statistical features of the original MR.F can be
obtained. Moreover, these approximate models lead to algorithms which have a. complexity
that is constant per pixel, in contrast to the algorithms normally associated with MRF's
which have a per pixel complexity which increases with image size.

We feel that the results presented in the preceding section, together with the substailtial
flexibility of the mnultiscale modeling framework, both demonstrate the promise of this
framework for image and multidimensional signal processing awnd also suggest a. rich set
of questions for further investigation. For example, our comparisons here between exact
and approximate representations have focused only on their visual characteristics. It is
important to develop other measures of the quality of these fields and in particular to
define and analyze metrics that allow us to place the trade-off between fidelity and model
order on a, rational basis. For instance one natural basis for measuring the distance between
two models corresponds to analyzing error probabilities associated with a binary hypothesis
test in which one must decide whether a given random field is a sample path of the exact
or approximate representation. In particular, if the probability of error is near to 1/2, then
the fields are nearly indistinguishable.

It is also important to investigate metrics directly related to performance in applica-
tions in which performance based on MR.F models and on approximate models of varying
orders can be compared. In particular, the CGIRF texture models are often nsed in region
lablelling and image segmentation applications. It would be of interest to develop algo-
rithlls for these applications based on the approximate representations, and collllpare them
in terms of performance and required computation to the standard algorithms. Note in
particular, that while our models are approxilations to MRF's. they may very well lead
to algorithms, which are not only far simpler computationally but which also have equal or
better performance. Specifically, an extremely important point is that all models, including
MRF's and multiscale models, are idealizations, and thus it is not a.t all obvious that MRF
based algorithms will perform better than those based on our models. Indeed, given the fact
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that the multiscale modeling framework leads to efficient algorithms a.d is richer tllan the
class of MRF's (in that any MRF can be approximated to any desired degree of accuracy
using multiscale models), there is a strong argument in favor of the framework described
here.

In addition, there are numerous other directions in which the ideas in this paper can
be extended and further developed. For example there are strong motivations for the con-
sideration of alternatives to wavelet transforms for the approximate representations used
in our multiscale models. For instance, it is certainly possible to consider non-orthogonal
multiresolution approximations to the values of MRF's along 1-D1) boundaries. Indeed, one
possibility is to use linear or higher-order polynomial interpolation - i.e. to perform gen-
eralized mid-point deflection along each of the 1-D boundaries. Also, and perhaps more
importantly, wavelet packet basis functions [62] may provide lower-dimensional approxima-
tions for some GMR.F's, such as the "wood" texture discussed in the previous section, in
which the random field has bandpass (i.e. oscillatory) rather than low-pass characteristics in
one or more directions. Indeed, techniques such as in [25], suggest the idea. of choosing the
"optimal" set of basis functions within some class, where optimality might be measured in
terms of the compactness of the representation, i.e. in terms of the order of the approximate
model required to achieve an acceptable representation.
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